Vertebrate and fish trees

List of cladograms tested for their correspondence with stratigraphic data. Cladograms are listed alphabetically. For each group, data are listed in order, as follows:

  • Group name
  • Tree size (number of terminals)
  • SRL, Standard range length, the total time represented by known fossil ranges
  • MIG, Minimum implied gap or ‘ghost range’
  • Gmin, the minimum possible ghost range when cladogram branches are rearranged
  • Gmax, the maximum possible ghost range when cladogram branches are rearranged
  • RCI, the Relative completeness index (Benton, 1994)
  • RCI and GER Sig., significance of the RCI and GER measures
  • No. consistent nodes, the number of stratigraphically consistent nodes
  • SCI, the Stratigraphic consistency index (Huelsenbeck, 1994)
  • SCI Sig., significance of the SCI measure
  • GER, the Gap excess ratio (Wills, 1999)
  • Range, the broad stratigraphic range of the cladogram
  • Reference, the source of the cladogram assessed

Group

No. terminals

SRL

MIG

Gmin

Gmax

RCI

RCI & GER Sig

Consistent nodes

SCI

SCI Sig.

GER

Range of O

Reference

Vertebrata(1)

16

721

186

67

783

74.202497

0.5

7

0.5

0.5

0.833799

Ord-Dev

Wilson & Caldwell (1998, fig. 9)

Agnatha(1)

8

1125

719

478

839

36.088889

84.25

2

0.333333

100

0.33241

Camb-Carb

Halstead (1982, fig. 5)

Agnatha(2)

4

135

149

97

149

-10.37037

100

1

0.5

82.75

0

Camb-Carb

Janvier (1981, fig. 11)

Agnatha(3)

6

1039

673

478

719

35.226179

73.25

2

0.5

88

0.19087

Camb-Carb

Janvier (1981, fig. 13a)

Agnatha(4)

6

1039

673

478

719

35.226179

71.25

2

0.5

88

0.19087

Camb-Carb

Janvier (1981, fig. 13b)

Agnatha(5)

6

115

42

21

84

63.478261

20

3

0.75

20

0.66667

Camb-Carb

Janvier (1984, fig. 4)

Agnatha(6)

8

1125

645

478

839

42.666667

20.5

4

0.666667

3.5

0.5374

Camb-Carb

Janvier (1984, fig. 8)

Agnatha(7)

7

1054

636

478

802

39.658444

24

3

0.6

10.5

0.51235

Camb-Carb

Maisey (1986, fig. 3)

Agnatha(8)

7

1054

673

478

802

36.148008

31.25

3

0.6

12

0.39815

Camb-Carb

Maisey (1986, fig. 3)

Agnatha(9)

11

1736

683

470

961

60.656682

5.25

4

0.444444

29.75

0.56619

Camb-Carb

Novitskaya and Talimaa (1989) in Janvier and Blieck (1993, fig. 6)

Agnatha(10)

7

1056

640

470

754

39.393939

29

1

0.2

100

0.40141

Camb-Carb

Moy-Thomas and Miles (1971) in Janvier and Blieck (1993, fig. 6)

Agnatha(11)

12

1195

794

470

995

33.556485

85

3

0.3

100

0.38286

Camb-Carb

Halstead (1982) in Janvier and Blieck (1993, fig. 6)

Agnatha(12)

10

1180

752

478

863

36.271186

46.25

2

0.25

100

0.28831

Camb-Carb

Gagnier (1989) in Janvier and Blieck (1993, fig. 6)

Agnatha(13)

10

1064

637

466

1239

40.131579

4

6

0.75

21.75

0.77878

Camb-Carb

Forey & Janvier (1993, fig. 4)

Agnatha: Galeaspida

8

162

36

21

48

77.777778

5

5

0.833333

11

0.44444

Sil-Dev

Janvier (1985, fig. 36)

Agnatha: Heterostraci

7

749

627

478

802

16.288385

21

4

0.8

4.5

0.54012

Sil-Dev

Janvier (1981, fig. 16)

Agnatha: Osteostraci

7

162

90

21

90

44.444444

100

0

0

100

0

Sil-Dev

Janvier (1985, fig. 37)

Osteostraci: Cephalaspidomorphi

6

209

466

466

818

-122.96651

1.5

4

1

1.5

1

Ord-Rec

Janvier & Lund (1983, fig. 5)

Osteostraci: Cephalaspidomorphi

5

175

119

119

216

32

9.5

3

1

9.5

1

Janvier & Lund (1983, fig. 5)

Osteostraci: Thyestidians(1)

5

105

6

6

94.28571

100

2

0.666667

100

Sil-Dev

Janvier (1985, fig. 40)

Osteostraci: Thyestidians(2)

11

214

147

21

189

31.308411

50.5

3

0.333333

50.5

0.25

Sil-Dev

Forey (1987b, fig. 8)

Osteostraci: Thyestidians(3)

11

214

147

21

189

31.308411

52.5

3

0.333333

52.5

0.25

Sil-Dev

Forey (1987b, fig. 9a)

Osteostraci: Thyestidians(4)

11

213

166

21

166

22.065728

100

2

0.222222

94.75

0

Sil-Dev

Forey (1987b, fig. 9b)

Osteostraci: Thyestidians(5)

9

179

109

21

109

39.106145

100

1

0.142857

100

0

Sil-Dev

Forey (1987b, fig. 10a)

Osteostraci: Thyestidians(6)

6

107

25

19

25

76.635514

100

3

0.75

58.75

0

Sil-Dev

Forey (1987b, fig. 10b)

Anaspida/ Petromyzontida

5

417

149

97

149

64.268585

100

2

0.666667

100

0

Sil-Carb

Arsenault & Janvier (1981, fig. 5)

Gnathostomata(1)

12

2979

732

376

1947

75.427996

0.25

5

0.5

1.25

0.77339

Sil-Dev

Nelson (1969, fig. 25)

Gnathostomata(2)

6

2152

158

52

182

92.657993

48.75

1

0.25

70

0.18461

Dev

Miles (1977, fig. 158a)

Gnathostomata(3)

6

2152

110

52

182

94.888476

16.75

2

0.5

24

0.55385

Dev

Miles (1977, fig. 158b)

Gnathostomata(4)

8

2393

343

253

799

85.666527

1.5

1

0.166667

100

0.83516

Dev

Wiley (1979, fig. 8)

Gnathostomata(5)

6

2139

363

216

417

83.029453

51.75

1

0.25

63

0.26866

Dev

Wiley (1979, fig. 8)

Gnathostomata(6)

6

2152

104

52

182

95.167286

14.25

2

0.5

21.25

0.6

Dev

Rosen et al. (1981, fig. 62)

Gnathostomata(7)

8

2205

125

52

263

94.331066

8

3

0.5

9

0.65403

Ord-Dev

Lauder & Liem (1983, fig. 1)

Gnathostomata(8)

10

2783

609

337

1327

78.11714

1.25

2

0.25

100

0.72525

Ord-Dev

Bemis (1984, fig. 2)

Gnathostomata(9)

10

2254

176

52

305

92.191659

14.5

3

0.375

29.5

0.50988

Ord-Dev

Gardiner (1984b, fig. 147)

Gnathostomata(10)

10

1982

716

466

926

63.874874

23.25

4

0.5

22.75

0.45652

Ord-Dev

Mallatt (1984, fig. 1)

Gnathostomata(11)

10

2335

152

52

318

93.490364

5

4

0.5

4.5

0.62406

Ord-Dev

Schultze (1987, fig. 9)

Gnathostomata(12)

8

2367

162

98

529

93.155894

0.5

4

0.666667

0.75

0.85151

Ord-Dev

McAllister (1987, fig. 80)

Gnathostomata(13)

6

2046

110

46

140

94.623656

70

2

0.5

58

0.31915

Ord-Dev

Schultze (1988, fig. 1)

Gnathostomata(14)

23

4654

1316

358

2841

71.723249

21

12

0.571429

0.5

0.614176

Sil-Jur

Schultze (1990, fig. 7)

Gnathostomata(15)

9

211

79

21

121

62.559242

22.5

2

0.285714

55.75

0.42

Dev

Forey et al. (1991, fig. 5)

Gnathostomata(16)

9

211

79

21

121

62.559242

21.75

2

0.285714

53.5

0.42

Dev

Forey et al. (1991, fig. 5, variant)

Gnathostomata(17)

8

2460

114

46

213

95.365854

38.5

2

0.4

39

0.59281

Dev

Schultze (1994, fig. 2b)

Gnathostomata(18)

8

2460

114

46

213

95.365854

39

2

0.4

39

0.59281

Dev

Schultze (1994, fig. 3c)

Placodermi(1)

8

211

55

31

67

73.933649

41.75

4

0.666667

68.5

0.33333

Dev

Miles and Young (1977, fig. 3)

Placodermi(2)

8

239

67

31

67

71.966527

100

3

0.5

99

0

Dev

Miles and Young (1977, fig. 5)

Placodermi(3)

6

116

42

18

42

63.793103

100

1

0.25

100

0

Dev

Young (1979, fig. 27a)

Placodermi(4)

5

168

24

12

24

85.714286

100

2

0.666667

100

0

Dev

Young (1979, fig. 27b)

Placodermi(5)

8

222

89

31

89

59.90991

100

1

0.166667

100

0

Dev

Young (1979, fig. 27c)

Placodermi(6)

10

244

97

31

97

60.245902

100

2

0.25

100

0

Dev

Gardiner (1984a, fig. 8)

Placodermi(7)

9

245

79

31

79

67.755102

100

2

0.285714

100

0

Dev

Goujet (1984, fig. 1)

Placodermi(8)

9

264

48

18

60

81.818182

60.75

6

0.857143

73

0.28571

Dev

Goujet (1984, fig 12)

Placodermi(9)

5

126

65

31

65

48.412698

100

1

0.333333

92.75

0

Dev

Long (1984, fig. 26a)

Placodermi(10)

5

126

41

31

65

67.460317

8.25

2

0.666667

29.75

0.70588

Dev

Long (1984, fig. 26f)

Placodermi(11)

5

126

43

31

65

65.873016

17.75

2

0.666667

31.25

0.64706

Dev

Long (1984, fig. 27)

Placodermi(12)

7

201

54

18

54

73.134328

100

2

0.4

100

0

Dev

Forey and Gardiner (1986, fig 4a)

Placodermi(13)

7

201

54

18

54

73.134328

100

2

0.4

100

0

Dev

Forey and Gardiner (1986, fig 4b)

Placodermi(14)

7

201

54

18

54

73.134328

100

1

0.2

100

0

Dev

Forey and Gardiner (1986, fig 4c)

Placodermi(15)

6

197

36

12

36

81.725888

100

1

0.25

100

0

Dev

Forey and Gardiner (1986, fig 4e)

Placodermi(16)

10

244

107

31

107

56.147541

100

3

0.375

85.75

0

Dev

Forey and Gardiner (1986, fig. 5)

Placodermi(17)

8

239

67

31

67

71.966527

100

3

0.5

97.75

0

Dev

Young (1986, fig. 18a)

Placodermi(18)

8

232

79

31

79

65.948276

100

1

0.166667

100

0

Dev

Young (1986, fig. 18b)

Placodermi(19)

8

239

67

31

67

71.966527

100

3

0.5

97.75

0

Dev

Young (1986, fig. 18c)

Placodermi(20)

11

316

70

31

165

77.848101

0.75

6

0.666667

3.5

0.70896

Dev

Carr (1995, fig. 4)

Placodermi: Arthrodira(1)

9

144

41

31

173

71.527778

0.25

6

0.857143

0.25

0.92958

Dev

Miles and Dennis (1979, fig. 15)

Placodermi: Arthrodira(2)

11

207

41

31

197

80.193237

1.75

8

0.888889

83.75

0.93976

Dev

Dennis and Miles (1980, fig. 22)

Placodermi: Arthrodira(3)

8

112

39

29

92

65.178571

0.25

3

0.5

30.5

0.84127

Dev

Carr (1991, fig. 19a)

Placodermi: Arthrodira(4)

10

122

47

29

127

61.47541

1.75

3

0.428571

83.75

0.81633

Dev

Carr (1991, fig. 19c)

Placodermi: Arthrodira(5)

16

313

59

31

340

81.15016

100

11

0.785714

100

0.90938

Dev

Gardiner and Miles (1994, fig. 19)

Placodermi: Arthrodira(6)

12

250

53

31

228

78.8

100

7

0.7

100

0.88832

Dev

Gardiner and Miles (1994, fig. 30)

Placodermi: Euarthrodira

7

168

28

22

76

83.333333

5

4

0.8

7.25

0.88889

Dev

Young (1979, fig. 18)

Placodermi: Antiarcha(1)

5

82

27

27

99

67.073171

5.75

3

1

5.75

1

Dev

Young (1984, fig. 2)

Placodermi: Antiarcha(2)

6

98

32

27

76

67.346939

7.5

3

0.75

78.5

0.897959

Dev

Zhu, M. & Janvier, P. (1996, fig. 12)

Acanthodii(1)

8

466

125

46

189

73.175966

30.25

4

0.666667

13.5

0.44755

Sil-Dev

Long (1986, fig. 8b)

Acanthodii(2)

8

376

143

52

262

61.968085

16.5

3

0.5

31.5

0.56667

Sil-Dev

Long (1986, fig. 9)

Chondrichthyes(1)

8

952

510

232

784

46.428571

8

1

0.166667

100

0.49638

Dev-Jur

Maisey (1984a, fig. 1)

Chondrichthyes(2)

4

821

65

37

65

92.082826

100

0

0

100

0

Dev-Carb

Maisey (1986, fig. 6)

Chondr.: Elasmobranchii(1)

7

1024

328

142

328

67.96875

100

0

0

100

0

Dev-Jur

Schaeffer and Williams (1977, fig. 2)

Chondr.: Elasmobranchii(2)

6

987

200

178

342

79.736575

13.75

1

0.25

100

0.86585

Dev-Jur

Schaeffer (1981, fig. 26b)

Chondr.: Elasmobranchii(3)

6

581

214

209

732

63.166954

8

3

0.75

3.5

0.99044

Dev-Jur

Maisey (1984b, fig. 2)

Chondr.: Elasmobranchii(4)

4

744

179

174

445

75.94086

25

1

0.5

48.75

0.98155

Dev-Jur

Maisey (1986, fig. 7)

Chondr.: Carcharinoidea

4

477

111

106

187

76.72956

15.5

1

0.5

49.75

0.93827

Dev-Jur

Maisey (1984b, fig. 3)

Chondr.: Petalodontiformes

4

225

27

27

54

88

21

2

1

21

1

Carb

Lund (1989, fig. 18)

Osteichthyes(1)

6

1248

168

168

292

86.538462

0.25

4

1

0.25

1

Dev-Carb

Lund & Lund (1985, fig. 77a)

Osteichthyes(2)

6

1266

172

168

302

86.413902

2.75

3

0.75

7.5

0.97015

Dev-Carb

Lund & Lund (1985, fig. 77b)

Osteichthyes: Actinopterygii(1)

12

1476

340

123

817

76.96477

0.5

6

0.6

19.5

0.68732

Tri-Cret

Patterson (1976, fig. 19)

Osteichthyes: Actinopterygii(2)

6

809

105

105

389

87.021014

0.25

4

1

0.25

1

Tri-Cret

Patterson and Rosen (1977, fig. 38)

Osteichthyes: Actinopterygii(3)

6

609

513

315

775

15.763547

19.5

2

0.5

19.5

0.56956

Dev-Carb

Patterson (1982, fig. 3B)

Osteichthyes: Actinopterygii(4)

18

1720

531

177

2288

69.127907

0.25

9

0.5625

1.5

0.83231

Tri-Cret

Rosen (1982, fig. 6)

Osteichthyes: Actinopterygii(5)

16

1392

963

333

2769

30.818966

1.75

8

0.571429

4.5

0.74138

Dev-Jur

Lauder and Liem (1983, fig. 6)

Osteichthyes: Actinopterygii(6)

16

1514

1151

315

1950

23.976222

1.75

4

0.285714

20.75

0.48869

Dev-Jur

Gardiner (1984b, fig. 146)

Osteichthyes: Actinopterygii(7)

16

1514

1151

315

1950

23.976222

3.5

4

0.285714

22.5

0.48869

Dev-Jur

Gardiner (1984b, fig. 146)

Osteichthyes: Actinopterygii(8)

11

1029

252

101

338

75.510204

19.25

4

0.444444

48.25

0.36287

Tri-Jur

Olsen (1984, fig. 19)

Osteichthyes: Actinopterygii(9)

5

882

303

181

303

65.646259

100

0

0

100

0

Carb-Jur

Maisey (1986, fig. 10)

Osteichthyes: Actinopterygii(10)

16

952

593

315

1801

37.710084

8.5

9

0.642857

0.5

0.81292

Carb-Jur

Gardiner and Schaeffer (1989, fig. 10)

Osteichthyes: Actinopterygii(11)

13

839

735

315

1961

12.395709

0.5

8

0.727273

0.25

0.74484

Carb-Jur

Gardiner and Schaeffer (1989, fig. 11)

Osteichthyes: Actinopterygii(12)

26

1466

929

315

2952

36.630286

0.25

14

0.583333

0.25

0.76716

Carb-Jur

Gardiner and Schaeffer (1989, fig. 12)

Osteichthyes: Actinopterygii(13)

11

803

271

183

1188

66.251557

0.75

1

0.111111

83.25

0.91244

Perm-Jur

Rieppel (1992, fig. 12)

Actinopterygii: Neopterygii(1)

5

729

213

112

249

70.781893

30.5

2

0.666667

16.75

0.26277

Tri-Jur

Wiley and Schultze (1984, fig. 2)

Actinopterygii: Neopterygii(2)

8

1221

311

219

1088

74.529075

0.5

4

0.666667

3

0.894131

Carb-Cret

Olsen & McCune (1991, fig. 16)

Actinopterygii: Neopterygii(3)

8

1221

311

219

1088

74.529075

1

4

0.666667

2

0.894131

Carb-Cret

Olsen & McCune (1991, fig. 17A)

Actinopterygii: Chondrostei

11

852

479

202

668

43.779343

17.75

3

0.333333

98.5

0.40558

Carb-Jur

Schaeffer (1973, fig. 14)

Actinopt.: Semionotiformes(1)

7

780

169

101

267

78.333333

9

5

1

1.25

0.59036

Carb-Jur

Olsen and McCune (1991, fig 17A)

Actinopt.: Semionotiformes(2)

7

780

181

101

267

76.794872

19

4

0.8

4.25

0.51807

Carb-Jur

Olsen and McCune (1991, fig. 17B)

Actinopterygii: Amiidae

9

236

189

74

211

19.915254

41

3

0.428571

97

0.160584

Jur-Cret

Chalifa & Tchernov (1982, fig. 14)

Actinopterygii: Teleostei(1)

4

590

25

25

38

95.762712

6.5

2

1

6.5

1

Jur-Cret

Patterson and Rosen (1977, fig. 22)

Actinopterygii: Teleostei(2)

13

1248

388

177

1324

68.910256

0.75

7

0.636364

0.75

0.81604

Jur-Cret

Patterson and Rosen (1977, fig. 54)

Actinopterygii: Teleostei(3)

28

2066

1166

145

1801

43.562439

0.25

15

0.535714

0.25

0.38345

Tri-Cret

Rosen (1982, fig. 5)

Teleostei: Acanthopterygii

11

695

155

33

218

77.697842

14

3

0.333333

46.75

0.34054

Cret-Eoc

Lauder and Liem (1983, fig. 50)

Teleostei: Atherinomorpha

4

211

47

47

121

77.725118

25.25

2

1

18.25

1

Cret-Eoc

Lauder and Liem (1983, fig. 47)

Teleostei: Beloniformes

5

168

67

40

82

60.119048

61.5

1

0.333333

100

0.35714

Eoc-Olig

Boughton et al. (1991, fig. 1)

Teleostei: Caproidae

4

263

125

47

125

52.471483

100

0

0

100

0

Eoc-Olig

Zehren (1987, fig. 1)

Teleostei: Clupeomorpha

4

373

111

111

211

70.241287

8.5

2

1

8.5

1

Cret-Eoc

Grande (1985, fig. 1a)

Teleostei: Cyprinodontiformes

4

121

94

50

119

22.31405

50.25

1

0.5

50.25

0.36232

Paleoc-Eoc

Parenti (1981, fig. 9)

Teleostei: Elopomorpha

7

454

124

62

198

72.687225

15

4

0.8

9

0.54412

Cret-Eoc

Lauder and Liem (1983, fig. 24)

Teleostei: Euteleostei(1)

7

629

214

82

295

65.977742

27.75

2

0.4

43

0.38028

Cret-Paleoc

Lauder and Liem (1983, fig. 28)

Teleostei: Euteleostei(2)

12

925

503

136

827

45.621622

24

4

0.4

63.75

0.46889

Cret-Paleoc

Schaeffer and Lauder (1986, fig. 1)

Teleostei: Osmeridae

8

16

248

60

408

-1450

52

2

0.333333

61

0.45977

Paleoc-Rec

Wilson & Williams (1991, fig. 12)

Teleostei: Ostariophysi(1)

5

320

221

136

410

30.9375

23.5

1

0.333333

59

0.68978

Cret-Paleoc

Fink and Fink (1981, fig. 1)

Teleostei: Ostariophysi(2)

5

427

261

136

303

38.875878

39.5

1

0.333333

64

0.2515

Cret-Paleoc

Lauder and Liem (1983, fig. 30)

Teleostei: Osteoglossidae(1)

11

102

193

97

510

-89.215686

15

7

0.777778

7

0.767554

Cret-Rec

Li & Wilson (1996, fig. 7)

Teleostei: Osteoglossidae(2)

18

188

440

97

982

-134.04255

3.5

10

0.625

5

0.612429

Cret-Rec

Li et al. (1997, fig. 9)

Teleostei: Paracanthopterygii

11

714

570

154

1269

20.168067

13

3

0.333333

8.5

0.626906

Cret-Rec

Grande (1988, fig. 7)

Teleostei: Pimelodidae

6

42

38

16

54

9.52381

37.5

2

0.5

90.5

0.421053

Mioc-Rec

Lundberg et al. (1988, fig. 4)

Teleostei: Pleuronectiformes

7

330

56

33

62

83.030303

29

3

0.6

19.5

0.2069

Paleoc-Eoc

Lauder and Liem (1983, fig. 63)

Teleostei: Salmoniformes(1)

5

277

115

73

138

58.483755

41.25

1

0.333333

60

0.35385

Paleoc-Eoc

Rosen (1974, fig. 38)

Teleostei: Salmoniformes(2)

5

277

73

73

138

73.646209

2.25

3

1

2.25

1

Paleoc-Eoc

Rosen (1974, fig. 39)

Teleostei: Tetraodontiformes

4

112

88

40

88

21.428571

100

0

0

100

0

Eoc-Olig

Lauder and Liem (1983, fig. 52)

Sarcopterygii(1)

4

1303

70

31

70

94.627782

100

0

0

100

0

Dev

Rosen et al. (1981, fig. 4C)

Sarcopterygii(2)

4

1303

70

31

70

94.627782

100

0

0

100

0

Dev

Rosen et al. (1981, fig. 4D)

Sarcopterygii(3)

7

1431

87

56

222

93.920335

15

2

0.4

39.5

0.81325

Dev

Long (1985, fig. 14a)

Sarcopterygii(4)

6

1328

40

19

50

96.987952

36

1

0.25

100

0.32258

Dev

Maisey (1986, fig. 14)

Sarcopterygii(5)

7

1651

112

46

187

93.216233

16

1

0.2

65

0.53192

Dev

Forey (1987a, fig. 2)

Sarcopterygii(6)

6

1357

73

29

73

94.620486

100

0

0

100

0

Dev

Ahlberg (1989, fig. 16a)

Sarcopterygii(7)

6

1357

73

29

73

94.620486

100

0

0

100

0

Dev

Ahlberg (1989, fig. 16b)

Sarcopterygii(8)

9

1787

85

46

239

95.243425

1.75

4

0.571429

23

0.79793

Dev

Gee (1990, fig. 1)

Sarcopterygii(9)

10

1414

176

98

247

87.553041

17

3

0.375

71

0.47651

Dev

Ahlberg (1991, fig. 14)

Sarcopterygii(10)

8

1406

88

31

149

93.74111

23.25

3

0.5

12

0.51695

Dev

Ahlberg (1991, fig. 15a)

Sarcopterygii(11)

7

1337

82

31

116

93.866866

39.75

2

0.4

55.5

0.4

Dev

Ahlberg (1991, fig. 15b)

Sarcopterygii(12)

9

1667

115

46

244

93.10138

15.75

3

0.428571

26

0.65151

Dev

Chang (1991, fig. 35)

Sarcopterygii(13)

9

1688

139

46

244

91.765403

16.75

3

0.428571

41.75

0.5303

Dev

Forey et al. (1991, fig. 5)

Sarcopterygii(14)

9

1688

139

46

244

91.765403

14.5

2

0.285714

56.5

0.5303

Dev

Forey et al. (1991, fig. 5, variant 1)

Sarcopterygii(15)

9

1688

112

46

244

93.364929

9.25

4

0.571429

33.5

0.66667

Dev

Forey et al. (1991, fig. 5, variant 2)

Sarcopterygii(16)

6

1248

168

168

292

86.538462

1.5

4

1

1.5

1

Dev-Carb

Lund & Lund (1985, fig. 77a)

Sarcopterygii(17)

6

1266

172

168

302

86.413902

1.5

3

0.75

4.75

0.97015

Dev-Carb

Lund & Lund (1985, fig. 77b)

Sarcopterygii: Dipnoi(1)

10

829

406

325

797

51.025332

0.25

5

0.625

3.75

0.82839

Dev-Carb

Miles (1977, fig. 157)

Sarcopterygii: Dipnoi(2)

7

468

167

152

177

64.316239

31.75

4

0.8

55.75

0.4

Dev-Carb

Bemis (1984, fig. 6)

Sarcopterygii: Dipnoi(3)

9

594

433

343

875

27.104377

31.75

4

0.571429

96.5

0.83083

Dev-Carb

Bemis (1984, fig. 8)

Sarcopterygii: Dipnoi(4)

7

375

192

164

278

48.8

1.25

4

0.8

2

0.75439

Dev-Carb

Maisey (1986, fig. 12)

Sarcopterygii: Dipnoi(5)

29

695

148

86

626

78.705036

31.75

23

0.851852

96.5

0.88518

Dev-Carb

Campbell and Barwick (1990, fig. 1)

Sarcopterygii: Dipnoi(6)

5

494

24

12

24

95.1417

100

2

0.666667

100

0

Dev

Chang & Smith (1992, fig. 11)

Sarcopterygii: Dipnoi(7)

8

568

34

22

58

94.014085

25.5

4

0.8

39

0.666667

Dev

Yu (1998, fig. 8)

Sarcopterygii: Rhipidistia

6

570

61

47

130

89.298246

3

3

0.75

5.5

0.83132

Dev

Vorobyeva and Schultze (1991, fig. 39)

Sarcopt.: Tristichopteridae

7

49

14

14

54

71.428571

0.5

5

1

0.5

1

Dev

Ahlberg & Johanson (1997, fig. 16)

Sarcopterygii: tetrapods(1)

7

149

113

113

187

24.161074

0.75

5

1

0.75

1

Dev

Lebedev & Coates (1995, fig. 19b)

Sarcopterygii: tetrapods(2)

7

406

32

32

82

92.118227

0.25

5

1

0.75

1

Dev

Ahlberg (1995, fig. 4)

Sarcopterygii: tetrapods(3)

11

905

37

37

275

95.911602

0.25

9

1

0.75

1

Dev-Carb

Ahlberg & Milner (1994, fig. 3)


References for assessed trees

 

  • Ahlberg, P. E. and Johanson, Z. 1997. Second tristichopterid (Sarcopterygii, Osteolepiformes) from the Upper Devonian of Canowindra, New South Wales, Australia, and phylogeny of the Tristichopteridae. Journal of Vertebrate Paleontology, 17, 653-673.
  • Ahlberg, P.E. (1989) Paired fin skeletons and relationships of the fossil group Porolepiformes (Osteichthyes: Sarcopterygii). Zoological Journal of the Linnean Society, 96, 119-166.
  • Ahlberg, P.E. (1991) A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. Zoological Journal of the Linnean Society, 103, 241-287.
  • Ahlberg, P.E. (1995) Elginerpeton pancheni and the earliest tetrapod clade. Nature, 373, 420-425.
  • Ahlberg, P.E. and Milner, A.R. (1994) The origin and early diversification of tetrapods. Nature, 368, 507-513.
  • Arsenault, M. and Janvier, P. (1991) The anaspid-like craniates of the Escuminac Formation (Upper Devonian) from Miguasha (Quebec, Canada), with remarks on anaspid- petromyzontid relationships, pp. 19-40. In Chang Mee-Mann, Liu Yu-hai, and Zhang Guo-rui (eds.) Early Vertebrates and Related Problems of Evolutionary Biology. Science Press, Beijing
  • Bemis, W.E. (1984) Paedomorphosis and the evolution of the Dipnoi. Paleobiology, 10, 293-307.
  • Boughton, D.A., Collette, B.B., and McCune, A.R. (1991): Heterochrony in jaw morphology of needlefishes (Teleostei: Belonidae). Systematic Zoology, 40, 329-354.
  • Campbell, K.S.W. and Barwick, R.E. (1984) The choana, maxillae, premaxillae and anterior palatal bones of early dipnoans. Proceedings of the Linnean Society of New South Wales, 107, 147-170.
  • Campbell, K.S.W. and Barwick, R.E. (1990) Paleozoic dipnoan phylogeny: functional complexes and evolution without parsimony. Paleobiology, 16, 143-169.
  • Carr, R.K. (1991) Reanalysis of Heintzichthys gouldii (Newberry), an aspinothoracid arthrodire (Placodermi) from the Famennian of northern Ohio, with a review of brachythoracid systematics. Zoological Journal of the Linnean Society, 103, 349-390.
  • Carr, R.K. (1995) Placoderm diversity and evolution. Bulletin du Muséum National d’Histoire Naturel, Paris, 4ème Série, 17, 85-125.
  • Chalifa, Y. and Tchernov, E. 1982. Pachyamia latimaxillaris, new genus and species (Actinopterygii: Amiidae), from the Cenomanian of Jerusalem. Journal of Vertebrate Paleontology, 2, 269-285.
  • Chang M.-M. (1991) “Rhipidistians,” dipnoans, and tetrapods. In Origins of the Higher Groups of Tetrapods, edited by H.-P. Schultze and L. Trueb, pp. 3-28. Ithaca, N.Y.: Cornell University Press.
  • Chang, M.-M. and Smith, M. M. 1992. Is Youngolepis a porolepiform? Journal of Vertebrate Paleontology, 12, 294-312.
  • Dennis, K. and Miles, R.S. (1980) New durophagous arthrodires from Gogo, Western Australia. Zoological Journal of the Linnean Society, 69, 43-85.
  • Fink, S.V. and Fink, W.L. (1981) Interrelationships of the ostariophysan fishes (Teleostei). Zoological Journal of the Linnean Society, 72, 297-353.
  • Forey, P.L. (1987a) Relationships of lungfishes. In The Biology and Evolution of Lungfishes, edited by W.E. Bemis, W.W. Burggren, and N.E. Kemp, pp. 75-91. New York: Alan R. Liss.
  • Forey, P.L. (1987b) The Downtonian ostracoderm Sclerodus Agassiz (Osteostraci: Tremataspididae). Bulletin of the British Museum (Natural History), Geology Series, 41, 1-30.
  • Forey, P.L. (1988) Golden jubilee for the coelacanth Latimeria chalumnae. Nature, 336, 727-732.
  • Forey, P.L. (1991) Latimeria chalumnae and its pedigree. Environmental Biology of Fishes, 32, 75-97.
  • Forey, P.L. and Gardiner, B.G. (1986) Observations on Ctenurella (Ptyctodontida) and the classification of placoderm fishes. Zoological Journal of the Linnean Society, 86, 43-74.
  • Forey, P.L. and Janvier, P. (1993) Agnathans and the origin of jawed vertebrates. Nature, 361, 129-134.
  • Forey, P.L., Gardiner, B.G., and Patterson, C. (1991) The lungfish, the coelacanth and the cow revisited. In Origins of the Higher Groups of Tetrapods, edited by H.-P. Schultze and L. Trueb, pp. 145-173. Ithaca, N.Y.: Cornell University Press.
  • Gardiner, B.G. (1982) Tetrapod classification. Zoological Journal of the Linnean Society, 74, 207-232.
  • Gardiner, B.G. (1983) Gnathostome vertebrae and the classification of the Amphibia. Zoological Journal of the Linnean Society, 79, 1-59.
  • Gardiner, B.G. (1984a) The relationship of placoderms. Journal of Vertebrate Paleontology, 4, 379-395.
  • Gardiner, B.G. (1984b) The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History), Geology Series, 37, 173-428.
  • Gardiner, B.G. and Miles, R.S. (1994) Eubrachythoracid arthrodires from Gogo, Western Australia. Zoological Journal of the Linnean Society, 112, 443-477.
  • Gardiner, B.G. and Schaeffer, B. (1989) Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society, 97, 135-187.
  • Gaudin, T.J. (1991) A re-examination of elasmobranch monophyly and chondrichthyan phylogeny. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 182, 133-160.
  • Gee, H. (1990) Fossil fishes and fashion. Nature, 348, 194-195.
  • Goujet, D.F. (1984) Placoderm interrelationships: a new interpretation, with a short review of placoderm classifications. Proceedings of the Linnean Society of New South Wales, 107, 211-243.
  • Grande, L. (1985) Recent and fossil clupeomorph fishes with materials for revision of the subgroups of clupeoids. Bulletin of the American Museum of Natural History, 181, 231-372.
  • Grande, L. 1988. A well preserved paracanthopterygian fish (Teleoestei) from freshwater Lower Paleocene deposits of Montana. Journal of Vertebrate Paleontology, 8, 117-130.
  • Halstead, L.B. (1982) Evolutionary trends and the phylogeny of the Agnatha. In Problems of Phylogenetic Reconstruction, edited by K.A. Joysey and A.E. Friday, pp. 159-196. London: Academic Press.
  • Janvier, P. (1981) The phylogeny of the Craniata, with particular reference to the significance of fossil “agnathans”. Journal of Vertebrate Paleontology, 1, 121-159.
  • Janvier, P. (1984) The relationships of the Osteostraci and Galeaspida. Journal of Vertebrate Paleontology, 4, 344-358.
  • Janvier, P. (1985): Les thyestidiens (Osteostraci) du Silurien de Saaremaa (Estonie). Deuxième partie: Analyse phylogénetique, repartition stratigraphique, remarques sur les genres Auchenaspis, Timanaspis, Tyriaspis, Didymaspis, Sclerodus et Tannuaspis. Annales de Paléontologie (Vertébrés-Invertébrés), 71, 187-216.
  • Janvier, P. and Blieck, A. (1993) L. B. Halstead and the heterostracan controversy. Modern Geology, 18, 89-105.
  • Janvier, P. and Jiang Pan (1982) Hyrcanaspis bliecki n. g. n. sp., a new primitive euantiarch (Antiarcha: Placodermi) from the Middle Devonian of northeastern Iran, with a discussion of antiarch phylogeny. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen,.164, 364-392.
  • Janvier, P. and Lund, R. (1983) Hardistiella montanensis n. gen. et sp. (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of the lampreys. Journal of Vertebrate Paleontology, 2, 407-413.
  • Janvier, P. and Lund, R. 1983. Hardistiella montanensis n. gen. et sp. (Petromyzontida) from the Lower Carboniferoys of Montana, with remarks on the affinities of the lampreys. Journal of Vertebrate Paleontology, 2, 407-413.
  • Lauder, G.V. and Liem, K.F. (1983). The evolution and interrelationships of the actinopterygian fishes. Bulletin of the Museum of Comparative Zoology, 150, 95-197.
  • Li, G.-Q. and Wilson, M. V. H. 1996. The discovery of Heterodontinae (Teleostei: Osteoglossidae) from the Paleocene Paskapoo Formation of Alberta, Canada. Journal of Vertebrate Paleontology, 16, 198-209.
  • Li, G.-Q., Grande, L., and Wilson, M. V. H. 1997. The species of Phareodus (Teleostei: Osteoglossidae) from the Eocene of North America and their phylogenetic relationships. Journal of Vertebrate Paleontology, 17, 487-505.
  • Long, J.A. (1984) New phyllolepids from Victoria and the relationships of the group. Proceedings of the Linnean Society of New South Wales, 107, 263-308.
  • Long, J.A. (1985) The structure and relationships of a new osteolepiform fish from the Late Devonian of Victoria, Australia. Alcheringa, 9, 1-22.
  • Long, J.A. (1986) New ischnacanthid acanthodians from the Early Devonian of Australia, with comments on acanthodian interrelationships. Zoological Journal of the Linnean Society, 87, 321-339.
  • Long, J.A. (1993) Cranial ribs in Devonian lungfishes and the origin of dipnoan air- breathing. Memoirs of the Association of Australasian Palaeontologists, 15, 199-209.

 

    • Lund, R. 1989. New petalodonts (Chondrichthyes) from the Upper Mississippian Bear Gulch Limestone (Namurian E2b) of Montana. Journal of Vertebrate Paleontology, 9, 350-368.

 

  • Lund, R. and Lund, W.L. (1985) Coelacanths from the Bear Gulch Limestone (Namurian) of Montana and the evolution of the Coelacanthiformes. Bulletin of the Carnegie Museum of Natural History, 25, 4-74.
  • Lundberg, J. G., Linares, O. J., Antonio, M. E., and Nass, P. 1988. Phractocephalus hemiliopterus (Pimeolodidae, Siluriformes) from the Upper Miocene Urumaco Formation, Venezuela: a further case of evolutionary stasis and local extinction among South American fishes. Journal of Vertebrate Paleontology, 8, 131-138.
  • Maisey, J.G. (1984a) Chondrichthyan phylogeny: a look at the evidence. Journal of Vertebrate Paleontology, 4, 359-371.
  • Maisey, J.G. (1984b) Higher elasmobranch phylogeny and biostratigraphy. Zoological Journal of the Linnean Society, 82, 33-54.
  • Maisey, J.G. (1986) Heads and tails: a chordate phylogeny. Cladistics, 2, 201-256.
  • Mallatt, J. (1984) Early vertebrate evolution: pharyngeal structure and the origin of gnathostomes. Journal of Zoology, 204, 169-183.
  • McAllister, J.A. (1987) Phylogenetic distribution and morphological reassessment of the intestines of fossil and modern fishes. Zoologische Jahrbuch für Anatomie, 115, 281-294.
  • Miles, R.S. (1977) Dipnoan (lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia. Zoological Journal of the Linnean Society, 61, 1-328.
  • Miles, R.S. and Dennis, K. (1979) A primitive eubrachythoracid arthrodire from Gogo, Western Australia. Zoological Journal of the Linnean Society, 66, 31-62.
  • Miles, R.S. and Young, G.C. (1977) Placoderm interrelationships reconsidered in the light of new ptyctodontids from Gogo, Western Australia. In Problems in Vertebrate Evolution, edited by S.M. Andrews, R.S. Miles, and A.D. Walker, pages 123-198. London: Academic Press.
  • Nelson, G.J. (1969) Gill arches and the phylogeny of fishes, with notes on the classification of the vertebrates. Bulletin of the American Museum of Natural History, 141, 475-552.
  • Olsen, P. E. and McCune, A. R. 1991. Morphology of the Semionotus elegans species group from the Early Jurassic part of the Newark Supergroup of eastern North America with comments on the early Semionotidae (Neopterygii). Journal of Vertebrate Paleontology, 11, 269-292.
  • Olsen, P.E. (1984) The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the relationships of the holostean fishes. Journal of Vertebrate Paleontology, 4, 481-499.
  • Olsen, P.E. and McCune, A.R. (1991) Morphology of the Semionotus elegans species group from the Early Jurassic part of the Newark Supergroup of Eastern North America with comments on the Family Semionotidae (Neopterygii). Journal of Vertebrate Paleontology, 11, 269-292.
  • Parenti, L.R. (1981) A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bulletin of the American Museum of Natural History, 168, 335-557.
  • Patterson, C. (1976) The contribution of paleontology to teleostean phylogeny. In Major Patterns in Vertebrate Evolution, edited by M.K. Hecht, P.C. Goody, and B.M. Hecht, pp. 579-643. New York: Plenum Press.
  • Patterson, C. (1982) Morphology and interrelationships of primitive actinopterygian fishes. American Zoologist, 22, 241-259.
  • Patterson, C. and Rosen, D.E. (1977) Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History, 158, 81-172.
  • Rieppel, O. (1992) A new species of the genus Saurichthys (Pisces: Actinopterygii) from the Middle Triassic of Monte San Giorgio (Switzerland), with comments on the phylogenetic interrelationships of the genus. Palaeontographica, Abteilung A, 221, 63-94.
  • Rosen, D.E. (1974) Phylogeny and zoogeography of salmoniform fishes and relationships of Lepidogalaxias salamandroides. Bulletin of the American Museum of Natural History, 153, 265-326.
  • Rosen, D.E. (1982) Teleostean interrelationships, morphological function and evolutionary inference. American Zoologist, 22, 261-273.
  • Rosen, D.E., Forey, P.L., Gardiner, B.G., and Patterson, C. (1981) Lungfishes, tetrapods, paleontology, and plesiomorphy. Bulletin of the American Museum of Natural History, 167, 163-264.
  • Schaeffer, B. (1973): Interrelationships of chondrosteans. In Interrelationships of fishes, edited by P.H. Greenwood, R.S. Miles, and C. Patterson, pp. 207-226. London: Academic Press.
  • Schaeffer, B. (1981) The xenacanth shark neurocranium, with comments on elasmobranch monophyly. Bulletin of the American Museum of Natural History, 169, 1-66.
  • Schaeffer, B. and Williams, M. (1977) Relationships of fossil and living elasmobranchs. American Zoologist, 17, 293-302.
  • Schaeffer, S.A. and Lauder, G.V. (1986) Historical transformation of functional design: Evolutionary morphology of feeding mechanisms in loracarioid catfishes. Systematic Zoology, 35, 489-508.
  • Schultze, H.-P. 1987. Dipnoans as sarcopterygians. In The Biology and Evolution of Lungfishes, edited by W.E. Bemis, W.W. Burggren, and N.E. Kemp, pp. 39-74. New York: Alan R. Liss.
  • Schultze, H.-P. 1988. Notes on the structure and phylogeny of vertebrate otoliths. Copeia, 1988, 257-260.
  • Schultze, H.-P. 1990. A new acanthodian from the Pennsylvanian of Utah, U.S.A., and the distribution of otoliths in gnathostomes. Journal of Vertebrate Paleontology, 10, 49-58.
  • Schultze, H.-P. 1994. Comparison of hypotheses on the relationships of sarcopterygians. Systematic Biology, 43, 155-173.
  • Vorobyeva, E. and Schultze, H.-P. (1991) Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods. In Origins of the Higher Groups of Tetrapods, edited by H.-P. Schultze and L. Trueb, pp. 68-109. Ithaca, N.Y.: Cornell University Press.
  • Wiley, E.O. (1979) Ventral gill arch muscles and the interrelationships of gnathostomes, with a new classification of the Vertebrata. Zoological Journal of the Linnean Society, 67, 149-179.
  • Wiley, E.O. and Schultze, H.-P. (1984) Family Lepisosteidae (gars) as living fossils. In Living Fossils, edited by N. Eldredge and S.M. Stanley, pp. 160-165. New York: Springer Verlag.
  • Wilson, M. V. H. and Caldwell, M. W. 1998. The Furcacaudiformes: a new order of jawless vertebrates with thelodont scales, based on articulated Silurian and Devonian fossils from northern Canada. Journal of Vertebrate Paleontology, 18, 10-29.
  • Wilson, M. V. H. and Williams, R. R. G. 1991. New Paleocene genus and species of smelt (Teleostei: Osmeridae) from freshwater deposits of the Paskapoo Formation, Alberta, Canada, and comments on osmerid phylogeny. Journal of Vertebrate Paleontology, 11, 434-451.
  • Young, G.C. (1979) New information on the structure and relationships of Buchanosteus (Placodermi: Euarthrodira) from the Early Devonian of New South Wales. Zoological Journal of the Linnean Society, 66, 309-352.
  • Young, G.C. (1984) Comments on the phylogeny and biogeography of antiarchs (Devonian placoderm fishes), and the use of fossils in biogeography. Proceedings of the Linnean Society of New South Wales, 107, 443-473.
  • Young, G.C. (1986) The relationships of placoderm fishes. Zoological Journal of the Linnean Society, 88, 1-57.
  • Yu, X. 1998. A new poroolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. Journal of Vertebrate Paleontology, 18, 261-274.
  • Zehren, S.J. (1987) Osteology and evolutionary relationships of the boarfish genus Antigonia (Teleostei: Caproidae). Copeia, 1987, 564-592.
  • Zhu, M. and Janvier, P. 1996. A small antiarch, Minicrania lirouyi gen. et sp. nov., from the Early Devonian of Qujing, Yunnan (China), with remarks on antiarch phylogeny. Journal of Vertebrate Paleontology, 16, 1-15.