Echinoderm trees

List of cladograms tested for their correspondence with stratigraphic data. Cladograms are listed alphabetically. For each group, data are listed in order, as follows:

  • Group name
  • Tree size (number of terminals)
  • SRL, Standard range length, the total time represented by known fossil ranges
  • MIG, Minimum implied gap or ‘ghost range’
  • Gmin, the minimum possible ghost range when cladogram branches are rearranged
  • Gmax, the maximum possible ghost range when cladogram branches are rearranged
  • RCI, the Relative completeness index (Benton, 1994)
  • RCI and GER Sig., significance of the RCI and GER measures
  • No. consistent nodes, the number of stratigraphically consistent nodes
  • SCI, the Stratigraphic consistency index (Huelsenbeck, 1994)
  • SCI Sig., significance of the SCI measure
  • GER, the Gap excess ratio (Wills, 1999)
  • Range, the broad stratigraphic range of the cladogram
  • Reference, the source of the cladogram assessed

Articulata(1)

10

733

204

139

974

72.169168

0.75

4

0.5

11.75

0.92216

Carb-Jur

Simms (1988, fig. 21.1)

Articulata(2)

12

1024

354

252

1716

65.429688

0.75

8

0.8

11.75

0.93033

Ord-Tri

Simms and Sevastopulo (1993, fig. 2)

Articulata(3)

9

474

318

247

1019

32.911392

0.75

5

0.714286

0.25

0.90803

Tri-Neog

Milsom et al. (1994, fig. 2)

Asteroidea(1)

9

858

382

304

1312

55.477855

0.75

3

0.428571

15.75

0.92262

Ord-Jur

Blake (1987, fig. 8)

Asteroidea(2)

11

1310

690

313

1599

47.328244

2.25

5

0.555556

14

0.70684

Carb-Paleog

Blake (1987, fig. 10)

Camarodonta(1)

6

244

142

130

566

41.803279

20.5

1

0.25

69.5

0.97248

Cret-Neog

Smith (1984b, fig. A1, foldout)

Camarodonta(2)

8

547

268

212

1033

51.005484

20.5

4

0.666667

1.25

0.93179

Cret-Neog

Smith (1988b, fig. 9)

Camerata

5

1258

126

63

126

89.984102

100

1

0.333333

100

0

Ord-Sil

Simms (1994, fig. 5)

Cassiduloida

8

670

113

113

507

83.134328

100

6

1

100

1

Jur-Cret

Smith (1984b, fig. A1, foldout)

Cidaroidea

9

264

15

15

113

94.318182

0.25

7

1

0.25

1

Perm-Tri

Smith (1990, fig. 3)

Clypeasteroida(1)

8

314

122

40

134

61.146497

17.5

4

0.571429

70.25

0.12766

Paleog-Neog

Durham (1966)

Clypeasteroida(2)

9

324

104

46

180

67.901235

9.5

5

0.714286

21.5

0.56716

Paleog-Neog

Seilacher (1979, fig. 28)

Clypeasteroida(3)

9

324

68

46

180

79.012346

9.5

7

1

21.5

0.83582

Paleog-Neog

Smith (1984b, fig. A1, foldout)

Crinoidea

9

1190

361

265

463

69.663866

18.25

4

0.571429

31.75

0.51515

Ord-Perm

Simms (1994, fig. 4)

Cryptocrinoida

5

141

75

25

92

46.808511

59.75

1

0.333333

59.75

0.25373

Ord

Paul (1988, fig. 16.4)

Cystoidea(1)

5

735

53

53

155

92.789116

18

3

1

9

1

Camb

Paul (1988, fig. 16.1)

Cystoidea(2)

10

434

165

106

529

61.981567

0.25

6

0.75

0.5

0.86052

Camb-Sil

Paul (1988, fig. 16.3)

Cystoidea-Rhipidocystidae

8

140

88

72

447

37.142857

0.5

4

0.666667

6

0.957333

Camb-Ord

Dean & Smith (1998, fig. 7)

Diadematacea(1)

5

800

304

237

385

62

26.25

1

0.333333

56.25

0.5473

Tri-Neog

Jensen (1981, fig. 23.7a)

Diadematacea(2)

5

800

304

237

385

62

23.25

1

0.333333

61

0.5473

Tri-Neog

Emlet (1988, fig. 23.7b)

Echinodermata(1)

5

2358

151

101

202

93.596268

32

3

1

12

0.50495

Ord-Sil

Matsumara et al. (1979, fig. 4.2c)

Echinodermata(2)

16

3774

705

349

1552

81.319555

0.25

7

0.5

10.75

0.70407

Vend-Dev

Smith (1984a, fig. 15)

Echinodermata(3)

5

2358

101

101

202

95.716709

3.25

3

1

3.25

1

Ord-Sil

Raff et al. (1988, fig. 3.3)

Echinodermata(4)

5

1700

0

0

100

100

3

1

100

Camb

Paul and Smith (1984, fig. 12)

Echinodermata(5)

5

2358

168

101

202

92.875318

48.5

2

0.666667

32.75

0.33663

Camb-Sil

Smiley (1988, fig. 6.1)

Echinodermata(6)

9

2692

262

161

715

90.267459

1

4

0.571429

4

0.81769

Camb-Sil

Smith (1988a, fig 7.6)

Echinoidea(1)

19

2779

715

358

3405

74.271321

1

6

0.352941

2.25

0.88284

Sil-Cret

Smith (1984b, fig. 1.5)

Echinoidea(2)

6

1103

323

271

1135

70.716228

4.75

2

0.5

13

0.93982

Ord-Jur

Smith (1984b, fig. 7.1)

Echinoidea(3)

5

823

266

214

362

67.679222

16.5

1

0.333333

100

0.64865

Tri-Neog

Raff et al. (1988, fig. 3.3)

Echinoidea(4)

5

793

313

170

606

60.529634

5

2

0.666667

18.75

0.67202

Dev-Tri

Smith and Hollingworth (1990, fig. 12a)

Echinoidea(5)

5

525

264

227

660

49.714286

4.5

2

0.666667

17.5

0.91455

Tri-Neog

Feral and Derelle (1991, fig. 2a)

Echinoidea(6)

5

525

318

227

660

39.428571

17

2

0.666667

17

0.78984

Tri-Paleog

Smith (1992, fig. 2c)

Echinoidea(7)

7

733

343

227

926

53.206003

0.75

4

0.8

1

0.83405

Tri-Neog

Smith et al. (1992, fig. 2)

Echinoidea(8)

6

457

83

65

189

81.838074

2.5

3

0.75

6.5

0.85484

Ord-Dev

Smith (1984b, fig. 7.2)

Edrioasteroidea(1)

6

546

106

106

285

80.586081

1.25

4

1

1.25

1

Camb-Ord

Smith (1985, fig. 12)

Edrioasteroidea(2)

10

315

178

135

769

43.492063

0.25

7

0.875

1.25

0.93218

Ord-Carb

Smith and Arbizu (1987, fig. 8)

Eleutherozoa(1)

8

2139

203

111

287

90.509584

6

3

0.5

34.25

0.47727

Ord-Dev

Smith (1984b, fig. 9.4)

Eleutherozoa(2)

9

438

127

127

460

71.004566

0.25

6

0.857143

0.5

1

Camb-Ord

Smith (1988a, fig. 8)

Eognathostomata

8

510

209

136

569

59.019608

1.25

4

0.666667

10.25

0.83141

Jur-Paleog

Smith (1984b, fig. A1, foldout)

Holasteroida(1)

6

223

141

141

474

36.7713

0.25

4

1

0.25

1

Cret-Neog

Smith (1984b, fig. A1, foldout)

Holasteroida(2)

6

223

270

141

474

-21.076233

13.25

1

0.25

100

0.61261

Cret-Neog

David (1988, fig. 25.7)

Holasteroida(3)

6

223

164

141

474

26.457399

1.75

2

0.5

50.25

0.93093

Cret-Neog

David (1988, fig. 25.9)

Hyposaleniinae

10

145

106

67

290

26.896552

2.25

6

0.75

3

0.82511

Cret

Smith and Wright (1990, fig. 53)

Inadunata

5

613

34

17

68

94.453507

40.75

2

0.666667

40.75

0.66667

Ord

Donovan (1988, fig. 18.2)

Neoasteroidea

10

1582

395

187

518

75.031606

15

4

0.5

56.25

0.3716

Jur-Paleog

Gale (1987, fig. 10)

Neognathostomata

6

394

138

128

618

64.974619

7.5

2

0.5

26

0.97959

Jur-Paleog

Mooi (1990, fig. 1)

Paracrinoida(1)

12

508

54

29

254

89.370079

5.5

9

0.9

4.5

0.88889

Ord

Smith (1984a, fig. 9)

Paracrinoida(2)

7

208

50

25

150

75.961538

13

4

0.8

13

0.8

Ord

Paul (1988, fig. 16.5)

Paxillosida

6

392

528

174

652

-34.693878

53.5

1

0.25

67.5

0.25941

Jur-Neog

Blake (1987, fig. 11)

Psychocidaridae

13

139

206

112

459

-48.201439

6.75

6

0.666667

67.5

0.72911

Cret-Neog

Smith and Wright (1989, fig. 5)

Rhombifera

4

207

60

60

98

71.014493

24.25

2

1

14.5

1

Camb-Ord

Paul (1988, fig. 16.2)

Saleniinae

9

103

188

58

323

-82.524272

13.75

4

0.571429

7.5

0.50943

Cret

Smith and Wright (1990, fig. 28)

Salenioida

11

566

165

98

550

70.848057

0.25

4

0.444444

6.75

0.85177

Jur-Cret

Smith and Wright (1990, fig. 26)

Spatangoida

10

904

207

96

514

77.10177

0.75

6

0.75

0.25

0.73445

Cret-Paleog

Smith (1984b, fig. A1, foldout)

Stereocidarini

15

158

197

50

438

-24.683544

2.75

8

0.615385

3.25

0.62113

Cret

Smith and Wright (1989, fig. 9)

Stirodonta(1)

6

874

131

64

131

85.011442

100

3

0.75

69.5

0

Jur

Smith (1984b, fig. A1, foldout)

Stirodonta(2)

13

487

525

206

1290

-7.802875

100

7

0.636364

0.25

0.70572

Jur-Cret

Smith (1994, fig. 6.7)

Valvatida

15

1514

1187

210

1636

21.598415

26.5

6

0.428571

67.75

0.31487

Jur-Neog

Blake (1987, fig. 12)

Velatida

6

205

392

196

784

-91.219512

24.75

3

0.75

29.75

0.66667

Jur-Neog

Blake (1987, fig. 13)

Velatida

6

205

196

196

784

4.390244

7

4

1

7

1

Jur-Rec

Blake (1996, fig. 1)


References for tested cladograms

  • Blake, D. B. (1987) A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata). Journal of Natural History, 21, 481-528.
  • Blake, D. B. (1996) Redescription and interpretation of the asteroid species Tropidaster pectinatus from the Jurassic of England. Palaeontology, 39, 179-188.
  • David, B. (1988) Origins of the deep-sea holasteroid fauna. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 331-346. Oxford: Clarendon Press.
  • Dean, J. and Smith, A. B. (1998) Palaeobiology of the primitive Ordovician pelmatozoan echinoderm Cardiocystites. Palaeontology, 41, 1183-1194.
  • Donovan, S.K. (1988) The early evolution of the Crinoidea. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 235-244. Oxford: Clarendon Press.
  • Durham, J.W. (1966) Clypeasteroids, pp. U450-U491. In R. C. Moore (ed.), Treatise on Invertebrate Paleontology U, Echinodermata 3(2). Geological Society of America and University of Kansas Press, Lawrence, Kansas.
  • Emlet, R.B. (1988) Crystallographic axes of echinoid genital plates reflect larval form: some phylogenetic implications. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 299-310. Oxford: Clarendon Press.
  • Féral, J.-P. and Derelle, E. (1991) Partial sequence of the 28S ribosomal RNA and the echinoid taxonomy and phylogeny. Application to the Antarctic brooding schizasteri. In Echinoderm Biology, edited by T. Yanagisawa, pp. 331-338. Rotterdam: A. A. Balkema.
  • Gale, A.S. (1987) Phylogeny and classification of the Asteroidea (Echinodermata). Zoological Journal of the Linnean Society, 89, 107-132.
  • Jensen, M. (1981) Morphology and classification of the Euechinoidea Bronn, 1860 – a cladistic analysis. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjobenhavn, 143, 7-99.
  • Matsumura, T., Hasegawa, M., and Shigei, M. (1979) Collagen biochemistry and phylogeny of echinoderms. Comparative Biochemistry and Physiology, 62B, 101-105.
  • Milsom, C., Simms, M.J., and Gale, A.S. (1994) Phylogeny and palaeobiology of Marsupites and Uintacrinus. Palaeontology, 38, 595-607.
  • Mooi, R. (1990) Paedomorphosis, Aristotle’s lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology, 16, 25-48.
  • Paul, C.R.C. (1988) The phylogeny of the cystoids. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 199-213. Oxford: Clarendon Press.
  • Paul, C.R.C. and Smith, A.B. (1984) The early radiation and phylogeny of the echinoderms. Biological Reviews, 59, 443-481.
  • Raff, R.A., Field, K.G., Ghiselin, M.T., Lane, D.J., Olsen, G.J., Pace, N.R., Parks, A.L., Parr, B.A., and Raff, E.C. (1988) Molecular analysis of distant phylogenetic relationships in echinoderms. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 29-41. Oxford: Clarendon Press.
  • Seilacher, A. (1979) Constructional morphology of sand dollars. Paleobiology, 5, 191-221.
  • Simms, M.J. (1988) The phylogeny of post-Palaeozoic crinoids. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 269-284. Oxford: Clarendon Press.
  • Simms, M.J. (1994) Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia, 26, 303-312.
  • Simms, M.J. and Sevastopulo, G.D. (1993) The origin of articulate crinoids. Palaeontology, 36, 91-109.
  • Smiley, S. (1988) The phylogenetic relationships of holothurians: a cladistic analysis of the extant echinoderm classes. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 69-84. Oxford: Clarendon Press.
  • Smith, A.B. (1984a) Classification of the Echinodermata. Palaeontology, 27, 431-459.
  • Smith, A.B. (1984b) Echinoid palaeobiology. London: George Allen and Unwin, 190 pp.
  • Smith, A.B. (1985) Cambrian eleutherozoan echinoderms and the early diversification of edrioasteroids. Palaeontology, 28, 715-756.
  • Smith, A.B. (1988a) Fossil evidence for the relationships of extant echinoderm classes and their times of divergence. In Echinoderm Phylogeny and Evolutionary Biology, edited by C.R.C. Paul and A.B. Smith, pp. 85-97. Oxford: Clarendon Press.
  • Smith, A.B. (1988b) Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31, 799–828.
  • Smith, A.B. (1990) Echinoid evolution from the Triassic to Lower Liassic. Cahiers de l’Université Catholique de Lyon, Séries Scientifique 3, 79–117.
  • Smith, A.B. (1992) Echinoderm phylogeny: Morphology and molecules approach accord. Trends in Ecology and Evolution 7, 224–229.
  • Smith, A.B. and Arbizu, M.A. (1987) Inverse larval development in a Devonian edrioas-teroid from Spain and the phylogeny of Agelacrinitinae. Lethaia 20, 49–62.
  • Smith, A.B. and Hollingworth, N.T.J. (1990) Tooth structure and phylogeny of the Upper Permian echinoid Miocidaris keyserlingi. Proceedings of the Yorkshire Geological Society 48, 47–60.
  • Smith, A.B. and Wright, C.W. (1989) British Cretaceous echinoids. Part 1, General introduction and Cidaroida. Palaeontographical Society Monographs 141, 1–101.
  • Smith, A.B. and Wright, C.W. (1990) British Cretaceous echinoids. Part 2, Echinothurioida, Diademodontoida and Stirodonta (1, Calycina). Palaeontographical Society Monographs 143, 101–198.
  • Smith, A.B. and Wright, C.W. (1993) British Cretaceous echinoids. Part 3, Stirodonta 2, Hemicidaroida and Phymosomatoida, Part 1. Palaeontographical Society Monographs 147, 199–267.
  • Smith, A.B., Lafay, B., and Christen, R. (1992) Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philosophical Transactions of the Royal Society of London , Series B 338, 365–382.