List of cladograms tested for their correspondence with stratigraphic data. Cladograms are listed alphabetically. For each group, data are listed in order, as follows:
- Group name
- Tree size (number of terminals)
- SRL, Standard range length, the total time represented by known fossil ranges
- MIG, Minimum implied gap or ‘ghost range’
- Gmin, the minimum possible ghost range when cladogram branches are rearranged
- Gmax, the maximum possible ghost range when cladogram branches are rearranged
- RCI, the Relative completeness index (Benton, 1994)
- RCI and GER Sig., significance of the RCI and GER measures
- No. consistent nodes, the number of stratigraphically consistent nodes
- SCI, the Stratigraphic consistency index (Huelsenbeck, 1994)
- SCI Sig., significance of the SCI measure
- GER, the Gap excess ratio (Wills, 1999)
- Range, the broad stratigraphic range of the cladogram
- Reference, the source of the cladogram assessed
Group |
No. terminals |
SRL |
MIG |
Gmin |
Gmax |
RCI |
RCI & GER Sig |
Consistent nodes |
SCI |
SCI Sig. |
GER |
Range of O |
Reference |
Mammalia-Gem94 |
9 |
523 |
164 |
83 |
485 |
68.642447 |
1.3 |
4 |
0.571429 |
18.4 |
0.798507 |
Cret-Olig |
Gemmell & Westerman (1994) fig. 2 (p. 10) |
Mammalia-Gem94 |
9 |
523 |
164 |
83 |
485 |
68.642447 |
1.3 |
4 |
0.571429 |
18.4 |
0.798507 |
Cret-Olig |
Gemmell & Westerman (1994) fig. 3 (p. 14) |
Mammalia-Goo85 |
16 |
981 |
227 |
77 |
811 |
76.860347 |
2 |
6 |
0.428571 |
23.3 |
0.79564 |
Cret-Olig |
Goodman et al. (1985), fig. 1 (p. 175) |
Mammalia-Pet91 |
20 |
1173 |
294 |
77 |
1067 |
74.936061 |
2.6 |
8 |
0.444444 |
70.2 |
0.780808 |
Cret-Olig |
Pettigrew (1991), fig. 4 (p. 213) |
Mammalia-Phi97 |
11 |
736 |
64 |
56 |
496 |
91.304348 |
2.6 |
8 |
0.888889 |
70.2 |
0.981818 |
Cret-Paleoc |
Philippe, H. (1997), fig. 1 |
Mammalia-Sho86 |
21 |
1282 |
159 |
77 |
1070 |
87.597504 |
2.6 |
11 |
0.578947 |
7.7 |
0.917422 |
Cret-Olig |
Shoshani (1986), fig. 2 (p. XXX) |
Mammalia-Spr93 |
15 |
938 |
80 |
62 |
742 |
91.471215 |
0.2 |
8 |
0.615385 |
5.8 |
0.973529 |
Cret-Eoc |
Springer & Kirsch (1993), fig. 2 top (p. 155) |
Mammalia-Spr93 |
15 |
938 |
76 |
62 |
742 |
91.897655 |
0.2 |
9 |
0.692308 |
1.8 |
0.979412 |
Cret-Eoc |
Springer & Kirsch (1993), fig 2 bottom (p. 155) |
Mammalia-Spr93 |
15 |
938 |
80 |
62 |
742 |
91.471215 |
0.1 |
8 |
0.615385 |
2 |
0.973529 |
Cret-Eoc |
Springer & Kirsch (1993), fig. 3 (p. 156) |
Mammalia-Spr93 |
15 |
938 |
88 |
62 |
742 |
90.618337 |
0.2 |
8 |
0.615385 |
0.1 |
0.961765 |
Cret-Eoc |
Springer & Kirsch (1993) fig. 4 (p. 157) |
Theria-DeJ93 |
20 |
1140 |
176 |
55 |
660 |
84.561404 |
2.7 |
10 |
0.555556 |
17.9 |
0.8 |
Cret-Olig |
De Jong et al. (1993) fig. 2.1 (p. 9) |
Theria-Der96 |
10 |
593 |
85 |
61 |
307 |
85.666105 |
0.6 |
3 |
0.375 |
20.8 |
0.902439 |
Cret-Olig |
D’Erchia et al. (1996) fig. 1a (p. 598) |
Theria-Der96 |
10 |
593 |
85 |
61 |
307 |
85.666105 |
0.6 |
5 |
0.625 |
3 |
0.902439 |
Cret-Olig |
D’Erchia et al. (1996) fig. 1b (p. 598) |
Theria-Der96 |
10 |
593 |
85 |
61 |
307 |
85.666105 |
0.6 |
4 |
0.5 |
6.8 |
0.902439 |
Cret-Olig |
D’Erchia et al. (1996) fig. 1b (p. 598) |
Theria-Gem94 |
8 |
411 |
135 |
54 |
253 |
67.153285 |
19.3 |
3 |
0.5 |
60.7 |
0.592965 |
Cret-Olig |
Gemmell & Westerman (1994) fig. 2 (p. 10) |
Theria-Gem94 |
8 |
411 |
135 |
54 |
253 |
67.153285 |
19.3 |
3 |
0.5 |
60.7 |
0.592965 |
Cret-Olig |
Gemmell & Westerman (1994) fig. 3 (p. 14) |
Theria-Goo85 |
15 |
921 |
205 |
77 |
759 |
77.741585 |
0.4 |
5 |
0.384615 |
45.1 |
0.812317 |
Cret-Olig |
Goodman et al. (1985), fig. 1 (p. 175) |
Theria-Irw94 |
21 |
868 |
197 |
74 |
1022 |
77.304147 |
0.4 |
9 |
0.473684 |
3.9 |
0.870253 |
Cret-Mioc |
Irwin & Arnason (1994) fig. 1 (p. 42) |
Theria-Irw94 |
21 |
868 |
213 |
74 |
1022 |
75.460829 |
0.4 |
10 |
0.526316 |
2.8 |
0.853376 |
Cret-Mioc |
Irwin & Arnason (1994) fig. 1 (p. 43) |
Theria-Irw94 |
21 |
868 |
196 |
74 |
1022 |
77.419355 |
0.4 |
8 |
0.421053 |
26.8 |
0.871308 |
Cret-Mioc |
Irwin & Arnason (1994) fig. 2 (p. 44) |
Theria-Irw94 |
21 |
868 |
158 |
74 |
1022 |
81.797235 |
0.4 |
10 |
0.526316 |
7.9 |
0.911392 |
Cret-Mioc |
Irwin & Arnason (1994) fig. 2 (p. 45) |
Theria-Pen91a/b |
8 |
486 |
40 |
40 |
234 |
91.769547 |
0.1 |
5 |
0.833333 |
8.8 |
1 |
Cret-Eoc |
Penny et al. (1991) fig. 9-10a (p. 177) |
Theria-Pen91a/b |
8 |
486 |
40 |
40 |
234 |
91.769547 |
0.2 |
5 |
0.833333 |
6.4 |
1 |
Cret-Eoc |
Penny et al. (1991) fig. 9-10b (p. 177) |
Theria-Pet89-16a |
15 |
824 |
136 |
55 |
526 |
83.495146 |
5.8 |
6 |
0.461538 |
24.3 |
0.828025 |
Cret-Olig |
Pettigrew et al. (1989) fig. 16a (p. 537) |
Theria-Pet91 |
19 |
1117 |
322 |
77 |
1011 |
71.172784 |
2.3 |
7 |
0.411765 |
92.6 |
0.737687 |
Cret-Olig |
Pettigrew (1991), fig. 4 (p. 213) |
Theria-Phi97 |
10 |
680 |
98 |
56 |
440 |
85.588235 |
0.1 |
7 |
0.875 |
0.5 |
0.890625 |
Cret-Paleoc |
Philippe, H. (1997), fig. 1 |
Theria-Rom73 |
10 |
459 |
111 |
74 |
441 |
75.816993 |
0.5 |
6 |
0.75 |
2.6 |
0.899183 |
Cret-Mioc |
Romero-Herrera et al. (1973) fig. 4 (p. 392) |
Theria-Sho86 |
20 |
1226 |
160 |
77 |
1014 |
86.949429 |
0.5 |
12 |
0.666667 |
3.1 |
0.911419 |
Cret-Olig |
Shoshani (1986), fig. 2 (p. XXX) |
Theria-Spr93 |
14 |
826 |
58 |
40 |
434 |
92.978208 |
0.4 |
7 |
0.583333 |
24.4 |
0.954315 |
Cret-Eoc |
Springer & Kirsch (1993), fig. 2 top (p. 155) |
Theria-Spr93 |
14 |
826 |
54 |
40 |
434 |
93.46247 |
0.1 |
8 |
0.666667 |
8.8 |
0.964467 |
Cret-Eoc |
Springer & Kirsch (1993), fig 2 bottom (p. 155) |
Theria-Spr93 |
14 |
826 |
58 |
40 |
434 |
92.978208 |
0.1 |
7 |
0.583333 |
13.2 |
0.954315 |
Cret-Eoc |
Springer & Kirsch (1993), fig. 3 (p. 156) |
Theria-Spr93 |
14 |
826 |
66 |
40 |
434 |
92.009685 |
2.3 |
7 |
0.583333 |
3.8 |
0.93401 |
Cret-Eoc |
Springer & Kirsch (1993) fig. 4 (p. 157) |
Theria-Sta92 |
9 |
548 |
52 |
48 |
262 |
90.510949 |
12 |
6 |
0.857143 |
14.2 |
0.981308 |
Cret-Eoc |
Stanhope et al. (1992) fig. 4a (p. 156) |
Theria-Wys87heba |
14 |
846 |
204 |
48 |
414 |
75.886525 |
11.7 |
2 |
0.166667 |
84.7 |
0.57377 |
Cret-Eoc |
Wyss et al. (1987) fig. 1 (p. 104) |
Theria-Wys87heba |
14 |
846 |
114 |
48 |
414 |
86.524823 |
2 |
7 |
0.583333 |
2.4 |
0.819672 |
Cret-Eoc |
Wyss et al. (1987) fig. 1 (p. 104) |
Theria-Wys87lens1 |
19 |
1079 |
219 |
55 |
631 |
79.703429 |
1.2 |
6 |
0.352941 |
6.7 |
0.715278 |
Cret-Olig |
Wyss et al. (1987) fig. 1 (p. 104) |
Theria-Wys87lens2 |
18 |
1075 |
184 |
55 |
545 |
82.883721 |
6 |
6 |
0.375 |
17 |
0.736735 |
Cret-Olig |
Wyss et al. (1987) fig. 1 (p. 104) |
Theria-Wys87my1 |
13 |
734 |
130 |
55 |
436 |
82.288828 |
0.9 |
7 |
0.636364 |
3.1 |
0.80315 |
Cret-Olig |
Wyss et al. (1987) fig. 2 (p. 105) |
Theria-Wys87my2 |
12 |
730 |
172 |
48 |
350 |
76.438356 |
26.9 |
2 |
0.2 |
81.7 |
0.589404 |
Cret-Olig |
Wyss et al. (1987) fig. 2 (p. 105) |
Metatheria-Kra92 |
7 |
59 |
56 |
23 |
102 |
5.084746 |
16.9 |
2 |
0.4 |
50.3 |
0.582278 |
Mioc-Rec |
Krajewski et al. (1992) fig. 2 (p. 25) |
Metatheria-Kra94 |
6 |
36 |
49 |
16 |
60 |
-36.111111 |
87.6 |
1 |
0.25 |
100 |
0.25 |
Mioc-Rec |
Krajewski et al. (1994) fig. 1 (p. 29) |
Metatheria-Kra94 |
6 |
36 |
49 |
16 |
60 |
-36.111111 |
75 |
1 |
0.25 |
100 |
0.25 |
Mioc-Rec |
Krajewski et al. (1994) fig. 2 (p. 32) |
Metatheria-Ret95 |
10 |
314 |
246 |
83 |
516 |
21.656051 |
19.4 |
3 |
0.375 |
77.7 |
0.623557 |
Cret-Rec |
Retief et al. (1995) fig. 2a (p. 11) |
Metatheria-Ret95 |
10 |
314 |
228 |
83 |
516 |
27.388535 |
15.8 |
4 |
0.5 |
28.7 |
0.665127 |
Cret-Rec |
Retief et al. (1995) fig. 2b (p. 11) |
Metatheria-Ret95 |
10 |
314 |
264 |
83 |
516 |
15.923567 |
15.4 |
2 |
0.25 |
79.9 |
0.581986 |
Cret-Rec |
Retief et al. (1995) fig. 2c (p. 11) |
Metatheria-Ret95 |
10 |
314 |
150 |
83 |
516 |
52.229299 |
2.9 |
5 |
0.625 |
7 |
0.845266 |
Cret-Rec |
Retief et al. (1995) fig. 2d (p. 11) |
Eutheria-Amm92 |
8 |
433 |
47 |
25 |
47 |
89.145497 |
100 |
4 |
0.666667 |
94.7 |
0 |
Paleoc-Olig |
Ammerman & Hillis (1992) fig. 6 (p. 228) |
Eutheria-DeJ93 |
19 |
1080 |
220 |
55 |
630 |
79.62963 |
4.6 |
9 |
0.529412 |
33.8 |
0.713043 |
Cret-Olig |
De Jong et al. (1993) fig. 2.1 (p. 9) |
Eutheria-Der96 |
9 |
503 |
53 |
45 |
163 |
89.463221 |
2.4 |
3 |
0.428571 |
25.2 |
0.932203 |
Cret-Olig |
D’Erchia et al. (1996) fig. 1a (p. 598) |
Eutheria-Der96 |
9 |
503 |
53 |
45 |
163 |
89.463221 |
2.4 |
5 |
0.714286 |
6.1 |
0.932203 |
Cret-Olig |
D’Erchia et al. (1996) fig. 1b (p. 598) |
Eutheria-Der96 |
9 |
503 |
53 |
45 |
163 |
89.463221 |
2.4 |
4 |
0.571429 |
4.6 |
0.932203 |
Cret-Olig |
D’Erchia et al. (1996) fig. 1b (p. 598) |
Eutheria-Eas90hemae |
4 |
236 |
4 |
4 |
4 |
98.305085 |
100 |
1 |
0.5 |
100 |
NaN |
Paleoc |
Easteal (1990), fig. 3 (p. 171) |
Eutheria-Eas90hemae |
4 |
236 |
4 |
4 |
4 |
98.305085 |
100 |
2 |
1 |
100 |
NaN |
Paleoc |
Easteal (1990), fig. 3 (p. 171) |
Eutheria-Goo85 |
14 |
861 |
249 |
77 |
707 |
71.080139 |
1 |
4 |
0.333333 |
79.6 |
0.726984 |
Cret-Olig |
Goodman et al. (1985) fig. 1 (p. 175) |
Eutheria-Gra93-2 |
16 |
292 |
4 |
4 |
8 |
82.11 |
46 |
6 |
0.429 |
59.5 |
1 |
Paleoc |
Graur (1993), fig. 2 (p. 143) |
Eutheria-Gra93-3a,b |
5 |
292 |
4 |
4 |
8 |
98.630137 |
9.7 |
2 |
0.666667 |
100 |
1 |
Paleoc |
Graur (1993), fig. 3a (p. 144) |
Eutheria-Gra93-3a,b |
5 |
292 |
8 |
4 |
8 |
97.260274 |
100 |
2 |
0.666667 |
100 |
0 |
Paleoc |
Graur (1993), fig. 3b (p. 144) |
Eutheria-Gra93-3c |
6 |
344 |
8 |
4 |
16 |
97.674419 |
27.8 |
3 |
0.75 |
33.9 |
0.666667 |
Paleoc |
Graur (1993), fig. 3c (p. 144) |
Eutheria-Gra93-3d |
5 |
292 |
4 |
4 |
8 |
98.630137 |
9 |
3 |
1 |
9 |
1 |
Paleoc |
Graur (1993), fig. 3d (p. 144) |
Eutheria-Gra93-3f |
6 |
338 |
22 |
18 |
22 |
93.491124 |
100 |
2 |
0.5 |
100 |
0 |
Paleoc-Eoc |
Graur (1993), fig. 3f (p. 144) |
Eutheria-Gra93-3g |
6 |
338 |
22 |
18 |
22 |
93.491124 |
100 |
3 |
0.75 |
58.7 |
0 |
Paleoc-Eoc |
Graur (1993), fig. 3g (p. 144) |
Eutheria-Gra93-3h |
4 |
236 |
4 |
4 |
4 |
98.305085 |
100 |
1 |
0.5 |
100 |
NaN |
Paleoc |
Graur (1993), fig. 3h (p. 144) |
Eutheria-Gra93-3i |
5 |
296 |
4 |
4 |
4 |
98.648649 |
100 |
3 |
1 |
38 |
NaN |
Paleoc |
Graur (1993), fig. 3i (p. 144) |
Eutheria-Gra93-5b |
5 |
263 |
37 |
25 |
37 |
85.931559 |
100 |
0 |
0 |
100 |
0 |
Paleoc-Eoc |
Graur (1993), fig. 5b (p. 146) |
Eutheria-Hon93-1c,d |
16 |
895 |
199 |
39 |
289 |
77.765363 |
31.7 |
3 |
0.214286 |
48.2 |
0.36 |
Cret-Olig |
Honeycutt & Adkins (1993) fig. 1c (p. 282) |
Eutheria-Hon93-1c,d |
16 |
895 |
185 |
39 |
289 |
79.329609 |
31.6 |
4 |
0.285714 |
43.8 |
0.416 |
Cret-Olig |
Honeycutt & Adkins (1993) fig. 1d (p. 282) |
Eutheria-Hon93-2a,b |
5 |
292 |
4 |
4 |
8 |
98.630137 |
11.8 |
3 |
1 |
11.8 |
1 |
Paleoc |
Honeycutt & Adkins (1993) fig. 2a (p. 284) |
Eutheria-Hon93-2a,b |
5 |
292 |
4 |
4 |
8 |
98.630137 |
11.8 |
3 |
1 |
11.8 |
1 |
Paleoc |
Honeycutt & Adkins (1993) fig. 2b (p. 284) |
Eutheria-Hon93-4a-c |
6 |
352 |
4 |
4 |
8 |
98.863636 |
6.5 |
4 |
1 |
6.5 |
1 |
Paleoc |
Honeycutt & Adkins (1993) fig. 4a (p. 290) |
Eutheria-Hon93-4a-c |
6 |
352 |
4 |
4 |
8 |
98.863636 |
6.5 |
4 |
1 |
6.5 |
1 |
Paleoc |
Honeycutt & Adkins (1993) fig. 4b (p. 290) |
Eutheria-Hon93-4a-c |
6 |
352 |
4 |
4 |
8 |
98.863636 |
13.6 |
4 |
1 |
34.2 |
1 |
Paleoc |
Honeycutt & Adkins (1993) fig. 4c (p. 290) |
Eutheria-Hon93-4d,f |
5 |
352 |
4 |
4 |
8 |
78.08 |
51.5 |
2 |
0.667 |
31.5 |
1 |
Paleoc |
Honeycutt & Adkins (1993) fig. 4d (p. 290) |
Eutheria-Hon93-4e |
5 |
352 |
4 |
4 |
8 |
74.14 |
66 |
3 |
1 |
66 |
1 |
Paleoc |
Honeycutt & Adkins (1993) fig. 4e (p. 290) |
Eutheria-Irw94 |
20 |
778 |
137 |
44 |
422 |
82.390746 |
13.6 |
9 |
0.5 |
6.9 |
0.753968 |
Paleoc-Mioc |
Irwin & Arnason (1994) fig. 1 (p. 42) |
Eutheria-Irw94 |
20 |
778 |
183 |
44 |
422 |
76.478149 |
0.1 |
9 |
0.5 |
11.9 |
0.632275 |
Paleoc-Mioc |
Irwin & Arnason (1994) fig. 1 (p. 43) |
Eutheria-Irw94 |
20 |
778 |
136 |
44 |
422 |
82.51928 |
0.1 |
8 |
0.444444 |
41.1 |
0.756614 |
Paleoc-Mioc |
Irwin & Arnason (1994) fig. 2 (p. 44) |
Eutheria-Irw94 |
20 |
778 |
128 |
44 |
422 |
83.547558 |
0.1 |
9 |
0.5 |
34.2 |
0.777778 |
Paleoc-Mioc |
Irwin & Arnason (1994) fig. 2 (p. 45) |
Eutheria-Mar93 |
8 |
369 |
47 |
37 |
111 |
87.262873 |
0.4 |
3 |
0.5 |
33.8 |
0.864865 |
Paleoc-Mioc |
Martin & Palumbi (1993) fig. 3b (p. 878) |
Eutheria-Miy86 |
16 |
895 |
157 |
39 |
289 |
82.458101 |
65.2 |
6 |
0.428571 |
47.8 |
0.528 |
Cret-Olig |
Miyamoto & Goodman (1986) fig. 3 (p. 235) |
Eutheria-Ott96 |
5 |
292 |
4 |
4 |
8 |
98.630137 |
9.4 |
3 |
1 |
9.4 |
1 |
Paleoc |
Otto et al. (1996) fig. 7.1 (p. 105) |
Eutheria-Pen91a/b |
7 |
396 |
10 |
10 |
24 |
97.474747 |
1.2 |
4 |
0.8 |
52.7 |
1 |
Paleoc-Eoc |
Penny et al. (1991) fig. 9-10a (p. 177) |
Eutheria-Pen91a/b |
7 |
396 |
10 |
10 |
24 |
97.474747 |
1.9 |
4 |
0.8 |
60.3 |
1 |
Paleoc-Eoc |
Penny et al. (1991) fig. 9-10b (p. 177) |
Eutheria-Pes91-1/2 |
4 |
236 |
4 |
4 |
4 |
98.305085 |
100 |
2 |
1 |
51 |
NaN |
Paleoc |
Pesole et al. (1991) fig. 1 (p. 539) |
Eutheria-Pes91-1/2 |
4 |
236 |
4 |
4 |
4 |
98.305085 |
100 |
1 |
0.5 |
100 |
NaN |
Paleoc |
Pesole et al. (1991) fig. 2 (p. 539) |
Eutheria-Pet89-16a |
14 |
734 |
106 |
25 |
106 |
85.558583 |
100 |
5 |
0.416667 |
85.6 |
0 |
Paleoc-Olig |
Pettigrew et al. (1989) fig. 16a (p. 537) |
Eutheria-Pet89-16b |
14 |
734 |
106 |
25 |
106 |
85.558583 |
100 |
4 |
0.333333 |
94.6 |
0 |
Paleoc-Olig |
Pettigrew et al. (1989) fig. 16b (p. 537) |
Eutheria-Pet89-16c |
14 |
734 |
98 |
25 |
106 |
86.648501 |
75.3 |
6 |
0.5 |
60.9 |
0.098765 |
Paleoc-Olig |
Pettigrew et al. (1989) fig. 16c (p. 537) |
Eutheria-Pet91 |
18 |
1067 |
242 |
77 |
949 |
77.319588 |
0.9 |
6 |
0.375 |
92.7 |
0.81078 |
Cret-Olig |
Pettigrew (1991), fig. 4 (p. 213) |
Eutheria-Phi97 |
9 |
624 |
82 |
56 |
384 |
86.858974 |
0.6 |
6 |
0.857143 |
2.5 |
0.920732 |
Cret-Paleoc |
Philippe, H. (1997), fig. 1 |
Eutheria-Rom73 |
9 |
436 |
104 |
74 |
374 |
76.146789 |
0.6 |
5 |
0.714286 |
17.7 |
0.9 |
Cret-Mioc |
Romero-Herrera et al. (1973) fig. 4 (p. 392) |
Eutheria-Sho85 |
12 |
699 |
147 |
41 |
297 |
78.969957 |
52.1 |
6 |
0.6 |
33.1 |
0.585938 |
Cret-Eoc |
Shoshani et al. (1985) fig. 2 (p. 198) |
Eutheria-Sho86 |
19 |
1191 |
144 |
70 |
937 |
87.90932 |
52.1 |
11 |
0.647059 |
14.3 |
0.914648 |
Cret-Eoc |
Shoshani (1986), fig. 2 (p. XXX) |
Eutheria-Spr93 |
13 |
736 |
28 |
10 |
44 |
96.195652 |
13.4 |
6 |
0.545455 |
99.3 |
0.470588 |
Paleoc-Eoc |
Springer & Kirsch (1993), fig 2 top (p. 155) |
Eutheria-Spr93 |
13 |
736 |
24 |
10 |
44 |
96.73913 |
3.6 |
7 |
0.636364 |
51.6 |
0.588235 |
Paleoc-Eoc |
Springer & Kirsch (1993), fig 2 bottom (p. 155) |
Eutheria-Spr93 |
13 |
736 |
28 |
10 |
44 |
96.195652 |
6.6 |
6 |
0.545455 |
83.5 |
0.470588 |
Paleoc-Eoc |
Springer & Kirsch (1993), fig. 3 (p. 156) |
Eutheria-Spr93 |
13 |
736 |
36 |
10 |
44 |
95.108696 |
39.5 |
6 |
0.545455 |
50.1 |
0.235294 |
Paleoc-Eoc |
Springer & Kirsch (1993) fig. 4 (p. 157) |
Eutheria-Sta92 |
8 |
506 |
14 |
34 |
214 |
97.233202 |
39.5 |
5 |
0.833333 |
26.8 |
1.111111 |
Cret-Paleoc |
Stanhope et al. (1992) fig. 4a (p. 156) |
Eutheria-Wys87heba |
13 |
790 |
244 |
48 |
380 |
69.113924 |
13.7 |
1 |
0.090909 |
100 |
0.409639 |
Cret-Eoc |
Wyss et al. (1987) fig. 1 (p. 104) |
Eutheria-Wys87heba |
13 |
790 |
138 |
48 |
380 |
82.531646 |
1 |
6 |
0.545455 |
7.9 |
0.728916 |
Cret-Eoc |
Wyss et al. (1987) fig. 1 (p. 104) |
Eutheria-Wys87lens1 |
18 |
1019 |
263 |
55 |
601 |
74.190383 |
0.7 |
5 |
0.3125 |
15.3 |
0.619048 |
Cret-Olig |
Wyss et al. (1987) fig. 1 (p. 104) |
Eutheria-Wys87lens2 |
17 |
1010 |
233 |
55 |
520 |
76.930693 |
5.6 |
5 |
0.333333 |
42.7 |
0.617204 |
Cret-Olig |
Wyss et al. (1987) fig. 1 (p. 104) |
Eutheria-Wys87my1 |
12 |
660 |
132 |
55 |
420 |
80 |
3.2 |
7 |
0.7 |
1.6 |
0.789041 |
Cret-Olig |
Wyss et al. (1987) fig. 2 (p. 105) |
Eutheria-Wys87my2 |
11 |
670 |
216 |
48 |
320 |
67.761194 |
30.3 |
1 |
0.111111 |
100 |
0.382353 |
Cret-Eoc |
Wyss et al. (1987) fig. 2 (p. 105) |
Carnivora-Tag86 |
8 |
209 |
57 |
34 |
103 |
72.727273 |
2.3 |
3 |
0.5 |
36.5 |
0.666667 |
Eoc-Pli |
Tagle et al. (1986) fig. 1 (p. 513) |
Carnivora-Vra94 |
8 |
233 |
59 |
23 |
79 |
74.678112 |
22.5 |
2 |
0.333333 |
51.9 |
0.357143 |
Eoc-Mioc |
Vrana et al. (1994) fig. 2A (p. 53) |
Carnivora-Vra94 |
8 |
233 |
59 |
23 |
79 |
74.678112 |
23.1 |
2 |
0.333333 |
53.7 |
0.357143 |
Eoc-Mioc |
Vrana et al. (1994) fig. 2B (p. 53) |
Arctoidea-OBr85 |
5 |
111 |
29 |
29 |
84 |
73.873874 |
7.2 |
2 |
0.666667 |
19.7 |
1 |
Eoc-Mioc |
O’Brien et al. (1985) fig. 1 (p. 141) |
Ursidae-Way91 |
10 |
87 |
101 |
21 |
143 |
-16.091954 |
43.4 |
2 |
0.25 |
100 |
0.344262 |
Mioc-Pleist |
Wayne et al. (1991) fig. 1 (p. 299) |
Archonta-Bai92-2 |
10 |
442 |
84 |
37 |
158 |
80.995475 |
2 |
7 |
0.875 |
2.9 |
0.61157 |
Paleoc-Mioc |
Bailey et al. (1992) fig. 2 (p. 87) |
Archonta-Bai92-3 |
7 |
373 |
47 |
25 |
47 |
87.399464 |
100 |
4 |
0.8 |
54.9 |
0 |
Paleoc-Olig |
Bailey et al. (1992) fig. 3A (p. 88) |
Archonta-Bai92-3 |
7 |
373 |
47 |
25 |
47 |
87.399464 |
100 |
4 |
0.8 |
54.5 |
0 |
Paleoc-Olig |
Bailey et al. (1992) fig. 3B (p. 88) |
Archonta-Bai92-3 |
7 |
373 |
47 |
25 |
47 |
87.399464 |
100 |
3 |
0.6 |
70.1 |
0 |
Paleoc-Olig |
Bailey et al. (1992) fig. 3C (p. 88) |
Archonta-Bai92-3 |
7 |
373 |
47 |
25 |
47 |
87.399464 |
100 |
2 |
0.4 |
100 |
0 |
Paleoc-Olig |
Bailey et al. (1992) fig. 3D (p. 88) |
Archonta-Bai92-3 |
7 |
373 |
47 |
25 |
47 |
87.399464 |
100 |
3 |
0.6 |
73.5 |
0 |
Paleoc-Olig |
Bailey et al. (1992) fig. 3E (p. 88) |
Archonta-Hon93-3a |
4 |
222 |
18 |
18 |
18 |
91.891892 |
100 |
1 |
0.5 |
100 |
NaN |
Paleoc-Eoc |
Honeycutt & Adkins (1993) fig. 3a (p. 286) |
Archonta-Hon93-3a |
4 |
222 |
18 |
18 |
18 |
91.891892 |
100 |
2 |
1 |
50.2 |
NaN |
Paleoc-Eoc |
Honeycutt & Adkins (1993) fig. 3a (p. 286) |
Archonta-Hon93-3bL |
6 |
342 |
18 |
18 |
18 |
94.736842 |
100 |
4 |
1 |
65.5 |
NaN |
Paleoc-Eoc |
Honeycutt & Adkins (1993) fig. 3b (p. 286) |
Archonta-Hon93-3bR |
6 |
342 |
18 |
18 |
18 |
72.34 |
100 |
4 |
1 |
65.5 |
NaN |
Paleoc-Eoc |
Honeycutt & Adkins (1993) fig. 3b (p. 286) |
Primates-Cra91 |
5 |
185 |
41 |
37 |
115 |
77.837838 |
9.1 |
2 |
0.666667 |
40.3 |
0.948718 |
Paleoc-Mioc |
Cracraft & Helm-Bychowski (1991) fig. 10-1 (p. 189) |
Primates-Cra91 |
5 |
185 |
41 |
37 |
115 |
77.837838 |
9.1 |
2 |
0.666667 |
18.3 |
0.948718 |
Paleoc-Mioc |
Cracraft & Helm-Bychowski (1991) fig. 10-2B-E (p. 189) |
Primates-Cra91 |
5 |
185 |
41 |
37 |
115 |
77.837838 |
9.1 |
2 |
0.666667 |
21.7 |
0.948718 |
Paleoc-Mioc |
Cracraft & Helm-Bychowski (1991) fig. 10-2F (p. 189) |
Primates-Goo85 |
7 |
236 |
57 |
40 |
156 |
75.847458 |
2.8 |
5 |
1 |
1.9 |
0.853448 |
Paleoc-Mioc |
Goodman et al. (1985), fig. 2 (p. 176) |
Primates-Mes97 |
5 |
95 |
20 |
13 |
20 |
78.947368 |
100 |
3 |
1 |
50.3 |
0 |
Mioc |
Messier & Stewart (1997) fig. 1 (p. 152) |
Rodentia-Bei91 |
5 |
179 |
71 |
34 |
71 |
60.335196 |
100 |
0 |
0 |
100 |
0 |
Eoc-Mioc |
Beintema et al. (1991) fig. 1 (p. 152) |
Rodentia-Cao94 |
5 |
374 |
56 |
56 |
186 |
85.026738 |
1.8 |
3 |
1 |
1.8 |
1 |
Cret-Paleoc |
Cao et al. (1994) fig. 2 (p. 600) |
Rodentia-Gra91 |
4 |
228 |
12 |
4 |
12 |
94.736842 |
100 |
0 |
0 |
100 |
0 |
Paleoc |
Graur et al. (1991) fig. 1b V (p. 649) |
Clethrionomyini-Din93 |
4 |
17 |
3 |
3 |
3 |
82.352941 |
100 |
2 |
1 |
49.5 |
NaN |
Pli-Pleist |
Din et al. (1993) fig. 2 (p. 713) |
Hystricognatha-Ned94-2-5 |
14 |
271 |
209 |
39 |
275 |
22.878229 |
70.9 |
3 |
0.25 |
92.2 |
0.279661 |
Eoc-Rec |
Nedbal et al. (1994) fig. 2 (p. 210) |
Hystricognatha-Ned94-2-5 |
14 |
271 |
190 |
39 |
275 |
29.889299 |
49.3 |
4 |
0.333333 |
70.2 |
0.360169 |
Eoc-Rec |
Nedbal et al. (1994) fig. 4 (p. 212) |
Hystricognatha-Ned94-2-5 |
14 |
271 |
138 |
39 |
275 |
49.077491 |
7.2 |
8 |
0.666667 |
3.3 |
0.580508 |
Eoc-Rec |
Nedbal et al. (1994) fig. 5A (p. 214) |
Hystricognatha-Ned94-2-5 |
14 |
271 |
177 |
39 |
275 |
34.686347 |
64.6 |
6 |
0.5 |
74.4 |
0.415254 |
Eoc-Rec |
Nedbal et al. (1994) fig. 5B (p. 214) |
Hystricognatha-Ned94-7B |
12 |
261 |
164 |
37 |
207 |
37.164751 |
42.8 |
3 |
0.3 |
75.7 |
0.252941 |
Eoc-Pleist |
Nedbal et al. (1994) fig. 7B (p. 217) |
Muridae-Che93 |
5 |
35 |
15 |
5 |
15 |
57.142857 |
100 |
2 |
0.666667 |
90.8 |
0 |
Mioc-Pli |
Chevret et al. (1993) fig. 2 (p. 3435) |
Ungulata-Dou93 |
8 |
207 |
43 |
19 |
73 |
79.227053 |
42.4 |
3 |
0.5 |
51.3 |
0.555556 |
Olig-Mioc |
Douzery (1993) fig. 3 (p. 1516) |
Ungulata-Gra94 |
5 |
220 |
39 |
27 |
60 |
82.272727 |
9 |
1 |
0.333333 |
57.1 |
0.636364 |
Paleoc-Olig |
Graur & Higgins (1994) fig. 1b (p. 359) |
Ungulata-Pro93-1C,D |
5 |
274 |
6 |
6 |
6 |
97.810219 |
100 |
2 |
0.666667 |
100 |
NaN |
Paleoc-Eoc |
Prothero (1993) fig. 13-1C (p. 175) |
Ungulata-Pro93-1C,D |
5 |
274 |
6 |
6 |
6 |
97.810219 |
100 |
3 |
1 |
42.6 |
NaN |
Paleoc-Eoc |
Prothero (1993) fig. 13-1D (p. 175) |
Ungulata-Pro93-1G |
6 |
324 |
6 |
6 |
12 |
98.148148 |
5.9 |
4 |
1 |
5.9 |
1 |
Paleoc-Eoc |
Prothero (1993) fig. 13-1G (p. 175) |
Artiodactyla-Jer95 |
7 |
205 |
61 |
34 |
145 |
70.243902 |
10.4 |
4 |
0.8 |
4.1 |
0.756757 |
Eoc-Mioc |
Jermann et al. (1995) fig. 1 (p. 58) |
Artiodactyla-Miy89 |
5 |
64 |
81 |
27 |
81 |
-26.5625 |
100 |
0 |
0 |
100 |
0 |
Olig-Pleist |
Miyamoto & Boyle (1989) fig. 3 (p. 444) |
Artiodactyla-Miy89 |
5 |
64 |
81 |
27 |
81 |
-26.5625 |
100 |
0 |
0 |
100 |
0 |
Olig-Pleist |
Miyamoto et al. (1989) fig. 1A-C (p. 345) |
Artiodactyla-Miy89 |
5 |
64 |
45 |
27 |
81 |
29.6875 |
23 |
2 |
0.666667 |
23 |
0.666667 |
Olig-Pleist |
Miyamoto et al. (1989) fig. 1D (p. 345) |
Artiodactyla-Miy93-1A |
4 |
59 |
27 |
27 |
57 |
54.237288 |
7.4 |
2 |
1 |
7.4 |
1 |
Olig-Pleist |
Miyamoto et al. (1993) fig. 19.1A/D (p. 273) |
Artiodactyla-Miy93-1C |
5 |
85 |
36 |
24 |
60 |
57.647059 |
18.8 |
1 |
0.333333 |
100 |
0.666667 |
Olig-Pli |
Miyamoto et al. (1993) fig. 19.1C (p. 273) |
Camelidae-Sta94 |
4 |
44 |
33 |
33 |
96 |
25 |
9.9 |
2 |
1 |
9.9 |
1 |
Olig-Pleist |
Stanley et al. (1994) fig. 1 (p. 3) |
Rhinocerotidae-Mor94 |
4 |
71 |
32 |
19 |
45 |
54.929577 |
49.8 |
1 |
0.5 |
49.8 |
0.5 |
Olig-Mioc |
Morales & Melnick (1994) fig. 2/3 (p. 131) |
Cetacea-Dou93 |
5 |
107 |
25 |
13 |
38 |
76.635514 |
21 |
1 |
0.333333 |
100 |
0.52 |
Olig-Mioc |
Douzery (1993) fig. 4 (p. 1517) |
Cetacea-Gre93 |
5 |
95 |
13 |
13 |
20 |
86.315789 |
11 |
3 |
1 |
11 |
1 |
Mioc |
Gretarsdottir & Arnason (1993) fig. 4a/b (p. 314) |
Cetacea-Mil93-1 |
7 |
121 |
56 |
19 |
82 |
53.719008 |
39.6 |
1 |
0.2 |
100 |
0.412698 |
Olig-Mioc |
Milinkovitch et al. (1993) fig. 1 (p. 347) |
Cetacea-Mil93-2 |
6 |
105 |
60 |
19 |
69 |
42.857143 |
51.4 |
1 |
0.25 |
100 |
0.18 |
Olig-Mioc |
Milinkovitch et al. (1993) fig. 2 (p. 348) |
References for mammalian molecular trees
- Ammermann, L. K. and Hillis, D. M. 1992. A molecular test of bat relationships: monophyly or diphyly? Systematic Biology, 41, 222-232.
- Bailey, W. J., Slightom, J. L., and Goodman, M. 1992. Rejection of the “flying primate” hypothesis by phylogenetic evidence from the e-globin gene. Science, 256, 86-89.
- Beintema, J. J., Rodewald, K., Braunitzer, G., Czelusniak, J., and Goodman, M. 1991. Studies on the phylogenetic position of the Ctenodactylidae (Rodentia). Molecular Biology and Evolution, 8, 151-154.
- Cao, Y., Adachi, J., Yano, T., and Hasegawa, M. 1994. Phylogenetic place of guinea pigs: no support of the rodent-poplyphyly hypothesis with maximum-likelihood analyses of multiple protein sequences. Molecular Biology and Evolution, 11, 593-604.
- Chevret, P., Denys, C., Jaeger, J.-J., Michaux, J., and Catzeflis, F. M. 1993. Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae). Proceedings of the National Academy of Sciences U.S.A., 90, 3433-3436.
- Cracraft, J. and Helm-Bychowski, K. 1991. Parsimony and phylogenetic inference using DNA sequences: some methodological strategies. Pp. 184-220 in Miyamoto, M. M. and Cracraft, J. (Eds), Phylogenetic analysis of DNA sequences. Oxford University Press, New York.
- D’Erchia, A. M., Gissi, C., Pesole, G., Saccone, C., and Áranson, U. 1996. The guinea-pig is not a rodent. Nature, 381, 597-600.
- De Jong, W. W., Leuinissen, J. A. M., and Wistow, G. J. 1993. Eye lens crystallins and the phylogeny of placental orders: evidence for a macroscelid-paenungulate clade. Pp. 5-12 in Szalay, F. S., Novacek, M. J., and McKenna, M. C. (Eds), Mammal phylogeny: Placentals. Springer Verlag, New York.
- Din, W., David, B., Laurin, B., Chaline, J., Harada, M., and Catzeflis, F. 1993. DNA/ RNA hybridization study of the Clethrionomyini (Arvicolidae, Rodentia): compoarison with morphological data. Comptes rendus de l’Académie des Sciences, Paris, Série II, 316, 709-716.
- Douzery, E. 1993. Evolutionary relationships among Cetacea based on the sequence of the mitochondrial rRNA gene: possible paraphytly of toothed-whales (odontocetes) and long separate evolution of sperm whales (Physteridae). Comptes rendus de l’Académie des Sciences, Paris, Sciences de la Vie, 316, 1511-1518.
- Easteal, S. 1990. The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics, 124, 165-173.
- Gemmell, N. J. and Westerman, M. 1994. Phylogenetic relationships within the Class Mammalia: a study using mitochondrial 12S RNA sequences. Journal of Mammalian Evolution, 2, 3-23.
- Goodman, M., Czelusniak, J., and Beeber, J. E. 1985. Phylogeny of Primates and other eutherian orders: a cladistic analysis using amino acid and nucleotide sequence data. Cladistics, 1, 171-185.
- Graur, D. 1993. Molecular phylogeny and the higher classification of eutherian mammals. Trends in Ecology and Evolution, 8, 141-147.
- Graur, D. and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the Order Artiodactyla. Molecular Biology and Evolution, 11, 357-364.
- Graur, D., Hide, W. A., and Li, W.-H. 1991. Is the guinea-pig a rodent? Nature, 351, 649-652.
- Grétarsdóttir, S. and Árnason, Ú. 1993. Molecular studies on two variant repeat types of the common cetacean DNA satellite of the Sperm whale, and the relationship between Phystereidae (Sperm whales) and Ziphiidae (Beaked whales). Molecular Biology and Evolution, 10, 306-318.
- Honeycutt, R. L. and Adkins, R. M. 1993. Higher level systematics of eutherian mammals: an assessment of molecular characters and phylogenetic hypotheses. Annual Review of Ecology and Systematics, 24, 279-305.
- Irwin, D. M. and Árnason, U. 1994. Cytochrome b gene of marine mammals: phylogeny and evolution. Journal of Mammalian Evolution, 2, 37-55.
- Jermann, T. M., Opitz, J. G., Stackhouse, J., and Benner, S. A. 1995. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature, 374, 57-59.
- Krajewski, C., Driskell, A. C., Baverstock, P. R., and Braun, M. J. 1992. Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: evidence from cytochrome b DNA sequences. Proceedings of the Royal Society, Series B, 250, 19-27.
- Krajewski, C., Painter, J., Buckley, L., and Westerman, M. 1994. Phylogenetic structure of the marsupial family Dasyuridae based on cytochrome b DNA sequences. Journal of Mammlian Evolution, 2, 25-35.
- Martin, A. P. and Palumbi, S. R. 1993. Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Molecular Biology and Evolution, 10, 873-891.
- Messier, W. and Stewart, C.-B. 1997. Episodic adaptive evolution of primate lysozymes. Nature, 385, 151-154.
- Milinkovitch, M. C., Orti, G., and Meyer, A. 1993. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature, 361, 346-348.
- Miyamoto, M. M. and Boyle, S. M. 1989. The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. Pp. 437-450 in Frenholm, B., Bremer, K., and Jornvall, H. (Eds), The hierarchy of life. Elsevier, Amsterdam.
- Miyamoto, M. M. and Goodman, M. 1986. Biomolecular systematics of eutherian mammals: phylogenetic patterns and classification. Systematic Zoology, 35, 230-240.
- Miyamoto, M. M., Tanhauser, S. M. amd Laipis, P. J. 1989. Systematic relationships in the artiodactyl tribe Bovini (family Bovidae), as determined from mitochondrial DNA sequences. Systematic Zoology, 38, 342-349.
- Miyamoto, M. M., Kraus, F., Laipis, P. J., Yanhauser, S. M., and Webb, S. D. 1993. Mitochondrial DNA phylogenies within Artiodactyla. Pp. 268-XXX in Szalay, F. S., Novacek, M. J., and McKenna, M. C. (Eds), Mammal phylogeny: Placentals. Springer Verlag, New York.
- Morales, J. C. and Melnick, D. J. 1994. Molecular systematics of the living rhinoceros. Molecular Phylogenetics and Evolution, 3, 128-134.
- Nedbal, M. A., Allard, M. W., and Honeycutt, R. L. 1994. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Molecular Phylogenetics and Evolution, 3, 206-220.
- O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda’s phylogeny. Nature, 317, 140-144.
- Otto, S. P., Cummings, M. P., and Wakeley, J. 1996. Inferring phylogenies from sequence data: the effects of sampling. Pp. 103-115 in Harvey, P. H., Leigh Brown, A. J., Maynard Smith, J., and Nee, S. (Eds), New uses for new phylogenies. Oxford University Press, Oxford.
- Penny, D., Hendy, M. D., and Steel, M. A. 1991. Testing the theory of descent. Pp. 155-183 in Miyamoto, M. M. and Cracraft, J. (Eds), Phylogenetic analysis of DNA sequences. Oxford University Press, New York.
- Pesole, G., Sbisá, E., Mignotte, F., and Saccone, C. 1991. The branching order of mammals: phylogenetic trees inferred from nuclear and mitochondrial molecular data. Journal of Molecular Evolution, 33, 537-542.
- Pettigrew, J. D. 1991. Wings or brain? Convergent evolution in the origins of bats. Systematic Zoology, 40, 199-216.
- Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. 1989. Phylogenetic relations between microbats, megabats, and primates (Mammalia: Chiroptera and Primates). Philosophical Transactions of the Royal Society of London, Series B, 325, 489-559.
- Philippe, H. 1997. Rodent monophyly: pitfalls of molecular phylogenies. Journal of Molecular Evolution, in press.
- Prothero, D. R. 1993. Ungulate phylogeny: molecular vs. morphological evidence. Pp. 173-181 in Szalay, F. S., Novacek, M. J., and McKenna, M. C. (Eds), Mammal phylogeny: Placentals. Springer Verlag, New York.
- Retief, J. D., Krajewski, C., Westerman, M., Winkfein, R. J., and Dixon, G. H. 1995. Molecular phylogeny and evolution of marsupial protamine P1 genes. Proceedings of the Royal Society, Series B, 259, 7-14.
- Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E. 1973. Molecular evolution of myoglobin and the fossil record: a phylogenetic syntheis. Nature, 246, 389-395.
- Shoshani, J. 1986. Mammal phylogeny: comparison of morphological and molecular results. Molecular Biology and Evolution, 3, 222-242.
- Springer, M. S. and Kirsch, J. A. W. 1993. A molecular perspective on the phylogeny of placental mammals based on mitochondrial 12S rDNA sequences. Journal of Mammalian Evolution, 1, 149-166.
- Stanhope, M. J., Czelusniak, J., Si, J. S., Nickerson, J., and Goodman, M. 1992. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Molecular Phylogenetics and Evolution, 1, 148-160.
- Stanley, H. F., Kadwell, M., and Wheeler, J. C. 1994. Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proceedings of the Royal Society, Series B, 256, 1-6.
- Tagle, D. A., Miyamoto, M. M., Goodman, M., Hofmann, O., Braunitzer, G., and Jalanka, H. 1986. Hemoglobin of pandas: phylogenetic relationships of carnivores as ascertained with protein sequence data. Naturwissenschaften, 73, 512-514.
- Vrana, P. B., Milinkovitch, M. C., Powell, J. R., and Wheeler, W. C. 1994. Higher level relationships of the arctoid Carnivora based on sequence data and “total evidence”. Molecular Phylogenetics and Evolution, 3, 47-58.
- Wayne, R. K., Van Valkenburgh, B., and O’Brien, S. J. 1991. Molecular distance and divergence time in carnivores and primates. Molecular Biology and Evolution, 8, 297-319.
- Wyss, A. R., Novacek, M. J., and McKenna, M. C. 1987. Amino acid sequence versus morphological data and the interordinal relationships of mammals. Molecular Biology and Evolution, 4, 99-116.