Mammal molecular trees

List of cladograms tested for their correspondence with stratigraphic data. Cladograms are listed alphabetically. For each group, data are listed in order, as follows:

  • Group name
  • Tree size (number of terminals)
  • SRL, Standard range length, the total time represented by known fossil ranges
  • MIG, Minimum implied gap or ‘ghost range’
  • Gmin, the minimum possible ghost range when cladogram branches are rearranged
  • Gmax, the maximum possible ghost range when cladogram branches are rearranged
  • RCI, the Relative completeness index (Benton, 1994)
  • RCI and GER Sig., significance of the RCI and GER measures
  • No. consistent nodes, the number of stratigraphically consistent nodes
  • SCI, the Stratigraphic consistency index (Huelsenbeck, 1994)
  • SCI Sig., significance of the SCI measure
  • GER, the Gap excess ratio (Wills, 1999)
  • Range, the broad stratigraphic range of the cladogram
  • Reference, the source of the cladogram assessed

Group

No. terminals

SRL

MIG

Gmin

Gmax

RCI

RCI & GER Sig

Consistent nodes

SCI

SCI Sig.

GER

Range of O

Reference

Mammalia-Gem94

9

523

164

83

485

68.642447

1.3

4

0.571429

18.4

0.798507

Cret-Olig

Gemmell & Westerman (1994) fig. 2 (p. 10)

Mammalia-Gem94

9

523

164

83

485

68.642447

1.3

4

0.571429

18.4

0.798507

Cret-Olig

Gemmell & Westerman (1994) fig. 3 (p. 14)

Mammalia-Goo85

16

981

227

77

811

76.860347

2

6

0.428571

23.3

0.79564

Cret-Olig

Goodman et al. (1985), fig. 1 (p. 175)

Mammalia-Pet91

20

1173

294

77

1067

74.936061

2.6

8

0.444444

70.2

0.780808

Cret-Olig

Pettigrew (1991), fig. 4 (p. 213)

Mammalia-Phi97

11

736

64

56

496

91.304348

2.6

8

0.888889

70.2

0.981818

Cret-Paleoc

Philippe, H. (1997), fig. 1

Mammalia-Sho86

21

1282

159

77

1070

87.597504

2.6

11

0.578947

7.7

0.917422

Cret-Olig

Shoshani (1986), fig. 2 (p. XXX)

Mammalia-Spr93

15

938

80

62

742

91.471215

0.2

8

0.615385

5.8

0.973529

Cret-Eoc

Springer & Kirsch (1993), fig. 2 top (p. 155)

Mammalia-Spr93

15

938

76

62

742

91.897655

0.2

9

0.692308

1.8

0.979412

Cret-Eoc

Springer & Kirsch (1993), fig 2 bottom (p. 155)

Mammalia-Spr93

15

938

80

62

742

91.471215

0.1

8

0.615385

2

0.973529

Cret-Eoc

Springer & Kirsch (1993), fig. 3 (p. 156)

Mammalia-Spr93

15

938

88

62

742

90.618337

0.2

8

0.615385

0.1

0.961765

Cret-Eoc

Springer & Kirsch (1993) fig. 4 (p. 157)

Theria-DeJ93

20

1140

176

55

660

84.561404

2.7

10

0.555556

17.9

0.8

Cret-Olig

De Jong et al. (1993) fig. 2.1 (p. 9)

Theria-Der96

10

593

85

61

307

85.666105

0.6

3

0.375

20.8

0.902439

Cret-Olig

D’Erchia et al. (1996) fig. 1a (p. 598)

Theria-Der96

10

593

85

61

307

85.666105

0.6

5

0.625

3

0.902439

Cret-Olig

D’Erchia et al. (1996) fig. 1b (p. 598)

Theria-Der96

10

593

85

61

307

85.666105

0.6

4

0.5

6.8

0.902439

Cret-Olig

D’Erchia et al. (1996) fig. 1b (p. 598)

Theria-Gem94

8

411

135

54

253

67.153285

19.3

3

0.5

60.7

0.592965

Cret-Olig

Gemmell & Westerman (1994) fig. 2 (p. 10)

Theria-Gem94

8

411

135

54

253

67.153285

19.3

3

0.5

60.7

0.592965

Cret-Olig

Gemmell & Westerman (1994) fig. 3 (p. 14)

Theria-Goo85

15

921

205

77

759

77.741585

0.4

5

0.384615

45.1

0.812317

Cret-Olig

Goodman et al. (1985), fig. 1 (p. 175)

Theria-Irw94

21

868

197

74

1022

77.304147

0.4

9

0.473684

3.9

0.870253

Cret-Mioc

Irwin & Arnason (1994) fig. 1 (p. 42)

Theria-Irw94

21

868

213

74

1022

75.460829

0.4

10

0.526316

2.8

0.853376

Cret-Mioc

Irwin & Arnason (1994) fig. 1 (p. 43)

Theria-Irw94

21

868

196

74

1022

77.419355

0.4

8

0.421053

26.8

0.871308

Cret-Mioc

Irwin & Arnason (1994) fig. 2 (p. 44)

Theria-Irw94

21

868

158

74

1022

81.797235

0.4

10

0.526316

7.9

0.911392

Cret-Mioc

Irwin & Arnason (1994) fig. 2 (p. 45)

Theria-Pen91a/b

8

486

40

40

234

91.769547

0.1

5

0.833333

8.8

1

Cret-Eoc

Penny et al. (1991) fig. 9-10a (p. 177)

Theria-Pen91a/b

8

486

40

40

234

91.769547

0.2

5

0.833333

6.4

1

Cret-Eoc

Penny et al. (1991) fig. 9-10b (p. 177)

Theria-Pet89-16a

15

824

136

55

526

83.495146

5.8

6

0.461538

24.3

0.828025

Cret-Olig

Pettigrew et al. (1989) fig. 16a (p. 537)

Theria-Pet91

19

1117

322

77

1011

71.172784

2.3

7

0.411765

92.6

0.737687

Cret-Olig

Pettigrew (1991), fig. 4 (p. 213)

Theria-Phi97

10

680

98

56

440

85.588235

0.1

7

0.875

0.5

0.890625

Cret-Paleoc

Philippe, H. (1997), fig. 1

Theria-Rom73

10

459

111

74

441

75.816993

0.5

6

0.75

2.6

0.899183

Cret-Mioc

Romero-Herrera et al. (1973) fig. 4 (p. 392)

Theria-Sho86

20

1226

160

77

1014

86.949429

0.5

12

0.666667

3.1

0.911419

Cret-Olig

Shoshani (1986), fig. 2 (p. XXX)

Theria-Spr93

14

826

58

40

434

92.978208

0.4

7

0.583333

24.4

0.954315

Cret-Eoc

Springer & Kirsch (1993), fig. 2 top (p. 155)

Theria-Spr93

14

826

54

40

434

93.46247

0.1

8

0.666667

8.8

0.964467

Cret-Eoc

Springer & Kirsch (1993), fig 2 bottom (p. 155)

Theria-Spr93

14

826

58

40

434

92.978208

0.1

7

0.583333

13.2

0.954315

Cret-Eoc

Springer & Kirsch (1993), fig. 3 (p. 156)

Theria-Spr93

14

826

66

40

434

92.009685

2.3

7

0.583333

3.8

0.93401

Cret-Eoc

Springer & Kirsch (1993) fig. 4 (p. 157)

Theria-Sta92

9

548

52

48

262

90.510949

12

6

0.857143

14.2

0.981308

Cret-Eoc

Stanhope et al. (1992) fig. 4a (p. 156)

Theria-Wys87heba

14

846

204

48

414

75.886525

11.7

2

0.166667

84.7

0.57377

Cret-Eoc

Wyss et al. (1987) fig. 1 (p. 104)

Theria-Wys87heba

14

846

114

48

414

86.524823

2

7

0.583333

2.4

0.819672

Cret-Eoc

Wyss et al. (1987) fig. 1 (p. 104)

Theria-Wys87lens1

19

1079

219

55

631

79.703429

1.2

6

0.352941

6.7

0.715278

Cret-Olig

Wyss et al. (1987) fig. 1 (p. 104)

Theria-Wys87lens2

18

1075

184

55

545

82.883721

6

6

0.375

17

0.736735

Cret-Olig

Wyss et al. (1987) fig. 1 (p. 104)

Theria-Wys87my1

13

734

130

55

436

82.288828

0.9

7

0.636364

3.1

0.80315

Cret-Olig

Wyss et al. (1987) fig. 2 (p. 105)

Theria-Wys87my2

12

730

172

48

350

76.438356

26.9

2

0.2

81.7

0.589404

Cret-Olig

Wyss et al. (1987) fig. 2 (p. 105)

Metatheria-Kra92

7

59

56

23

102

5.084746

16.9

2

0.4

50.3

0.582278

Mioc-Rec

Krajewski et al. (1992) fig. 2 (p. 25)

Metatheria-Kra94

6

36

49

16

60

-36.111111

87.6

1

0.25

100

0.25

Mioc-Rec

Krajewski et al. (1994) fig. 1 (p. 29)

Metatheria-Kra94

6

36

49

16

60

-36.111111

75

1

0.25

100

0.25

Mioc-Rec

Krajewski et al. (1994) fig. 2 (p. 32)

Metatheria-Ret95

10

314

246

83

516

21.656051

19.4

3

0.375

77.7

0.623557

Cret-Rec

Retief et al. (1995) fig. 2a (p. 11)

Metatheria-Ret95

10

314

228

83

516

27.388535

15.8

4

0.5

28.7

0.665127

Cret-Rec

Retief et al. (1995) fig. 2b (p. 11)

Metatheria-Ret95

10

314

264

83

516

15.923567

15.4

2

0.25

79.9

0.581986

Cret-Rec

Retief et al. (1995) fig. 2c (p. 11)

Metatheria-Ret95

10

314

150

83

516

52.229299

2.9

5

0.625

7

0.845266

Cret-Rec

Retief et al. (1995) fig. 2d (p. 11)

Eutheria-Amm92

8

433

47

25

47

89.145497

100

4

0.666667

94.7

0

Paleoc-Olig

Ammerman & Hillis (1992) fig. 6 (p. 228)

Eutheria-DeJ93

19

1080

220

55

630

79.62963

4.6

9

0.529412

33.8

0.713043

Cret-Olig

De Jong et al. (1993) fig. 2.1 (p. 9)

Eutheria-Der96

9

503

53

45

163

89.463221

2.4

3

0.428571

25.2

0.932203

Cret-Olig

D’Erchia et al. (1996) fig. 1a (p. 598)

Eutheria-Der96

9

503

53

45

163

89.463221

2.4

5

0.714286

6.1

0.932203

Cret-Olig

D’Erchia et al. (1996) fig. 1b (p. 598)

Eutheria-Der96

9

503

53

45

163

89.463221

2.4

4

0.571429

4.6

0.932203

Cret-Olig

D’Erchia et al. (1996) fig. 1b (p. 598)

Eutheria-Eas90hemae

4

236

4

4

4

98.305085

100

1

0.5

100

NaN

Paleoc

Easteal (1990), fig. 3 (p. 171)

Eutheria-Eas90hemae

4

236

4

4

4

98.305085

100

2

1

100

NaN

Paleoc

Easteal (1990), fig. 3 (p. 171)

Eutheria-Goo85

14

861

249

77

707

71.080139

1

4

0.333333

79.6

0.726984

Cret-Olig

Goodman et al. (1985) fig. 1 (p. 175)

Eutheria-Gra93-2

16

292

4

4

8

82.11

46

6

0.429

59.5

1

Paleoc

Graur (1993), fig. 2 (p. 143)

Eutheria-Gra93-3a,b

5

292

4

4

8

98.630137

9.7

2

0.666667

100

1

Paleoc

Graur (1993), fig. 3a (p. 144)

Eutheria-Gra93-3a,b

5

292

8

4

8

97.260274

100

2

0.666667

100

0

Paleoc

Graur (1993), fig. 3b (p. 144)

Eutheria-Gra93-3c

6

344

8

4

16

97.674419

27.8

3

0.75

33.9

0.666667

Paleoc

Graur (1993), fig. 3c (p. 144)

Eutheria-Gra93-3d

5

292

4

4

8

98.630137

9

3

1

9

1

Paleoc

Graur (1993), fig. 3d (p. 144)

Eutheria-Gra93-3f

6

338

22

18

22

93.491124

100

2

0.5

100

0

Paleoc-Eoc

Graur (1993), fig. 3f (p. 144)

Eutheria-Gra93-3g

6

338

22

18

22

93.491124

100

3

0.75

58.7

0

Paleoc-Eoc

Graur (1993), fig. 3g (p. 144)

Eutheria-Gra93-3h

4

236

4

4

4

98.305085

100

1

0.5

100

NaN

Paleoc

Graur (1993), fig. 3h (p. 144)

Eutheria-Gra93-3i

5

296

4

4

4

98.648649

100

3

1

38

NaN

Paleoc

Graur (1993), fig. 3i (p. 144)

Eutheria-Gra93-5b

5

263

37

25

37

85.931559

100

0

0

100

0

Paleoc-Eoc

Graur (1993), fig. 5b (p. 146)

Eutheria-Hon93-1c,d

16

895

199

39

289

77.765363

31.7

3

0.214286

48.2

0.36

Cret-Olig

Honeycutt & Adkins (1993) fig. 1c (p. 282)

Eutheria-Hon93-1c,d

16

895

185

39

289

79.329609

31.6

4

0.285714

43.8

0.416

Cret-Olig

Honeycutt & Adkins (1993) fig. 1d (p. 282)

Eutheria-Hon93-2a,b

5

292

4

4

8

98.630137

11.8

3

1

11.8

1

Paleoc

Honeycutt & Adkins (1993) fig. 2a (p. 284)

Eutheria-Hon93-2a,b

5

292

4

4

8

98.630137

11.8

3

1

11.8

1

Paleoc

Honeycutt & Adkins (1993) fig. 2b (p. 284)

Eutheria-Hon93-4a-c

6

352

4

4

8

98.863636

6.5

4

1

6.5

1

Paleoc

Honeycutt & Adkins (1993) fig. 4a (p. 290)

Eutheria-Hon93-4a-c

6

352

4

4

8

98.863636

6.5

4

1

6.5

1

Paleoc

Honeycutt & Adkins (1993) fig. 4b (p. 290)

Eutheria-Hon93-4a-c

6

352

4

4

8

98.863636

13.6

4

1

34.2

1

Paleoc

Honeycutt & Adkins (1993) fig. 4c (p. 290)

Eutheria-Hon93-4d,f

5

352

4

4

8

78.08

51.5

2

0.667

31.5

1

Paleoc

Honeycutt & Adkins (1993) fig. 4d (p. 290)

Eutheria-Hon93-4e

5

352

4

4

8

74.14

66

3

1

66

1

Paleoc

Honeycutt & Adkins (1993) fig. 4e (p. 290)

Eutheria-Irw94

20

778

137

44

422

82.390746

13.6

9

0.5

6.9

0.753968

Paleoc-Mioc

Irwin & Arnason (1994) fig. 1 (p. 42)

Eutheria-Irw94

20

778

183

44

422

76.478149

0.1

9

0.5

11.9

0.632275

Paleoc-Mioc

Irwin & Arnason (1994) fig. 1 (p. 43)

Eutheria-Irw94

20

778

136

44

422

82.51928

0.1

8

0.444444

41.1

0.756614

Paleoc-Mioc

Irwin & Arnason (1994) fig. 2 (p. 44)

Eutheria-Irw94

20

778

128

44

422

83.547558

0.1

9

0.5

34.2

0.777778

Paleoc-Mioc

Irwin & Arnason (1994) fig. 2 (p. 45)

Eutheria-Mar93

8

369

47

37

111

87.262873

0.4

3

0.5

33.8

0.864865

Paleoc-Mioc

Martin & Palumbi (1993) fig. 3b (p. 878)

Eutheria-Miy86

16

895

157

39

289

82.458101

65.2

6

0.428571

47.8

0.528

Cret-Olig

Miyamoto & Goodman (1986) fig. 3 (p. 235)

Eutheria-Ott96

5

292

4

4

8

98.630137

9.4

3

1

9.4

1

Paleoc

Otto et al. (1996) fig. 7.1 (p. 105)

Eutheria-Pen91a/b

7

396

10

10

24

97.474747

1.2

4

0.8

52.7

1

Paleoc-Eoc

Penny et al. (1991) fig. 9-10a (p. 177)

Eutheria-Pen91a/b

7

396

10

10

24

97.474747

1.9

4

0.8

60.3

1

Paleoc-Eoc

Penny et al. (1991) fig. 9-10b (p. 177)

Eutheria-Pes91-1/2

4

236

4

4

4

98.305085

100

2

1

51

NaN

Paleoc

Pesole et al. (1991) fig. 1 (p. 539)

Eutheria-Pes91-1/2

4

236

4

4

4

98.305085

100

1

0.5

100

NaN

Paleoc

Pesole et al. (1991) fig. 2 (p. 539)

Eutheria-Pet89-16a

14

734

106

25

106

85.558583

100

5

0.416667

85.6

0

Paleoc-Olig

Pettigrew et al. (1989) fig. 16a (p. 537)

Eutheria-Pet89-16b

14

734

106

25

106

85.558583

100

4

0.333333

94.6

0

Paleoc-Olig

Pettigrew et al. (1989) fig. 16b (p. 537)

Eutheria-Pet89-16c

14

734

98

25

106

86.648501

75.3

6

0.5

60.9

0.098765

Paleoc-Olig

Pettigrew et al. (1989) fig. 16c (p. 537)

Eutheria-Pet91

18

1067

242

77

949

77.319588

0.9

6

0.375

92.7

0.81078

Cret-Olig

Pettigrew (1991), fig. 4 (p. 213)

Eutheria-Phi97

9

624

82

56

384

86.858974

0.6

6

0.857143

2.5

0.920732

Cret-Paleoc

Philippe, H. (1997), fig. 1

Eutheria-Rom73

9

436

104

74

374

76.146789

0.6

5

0.714286

17.7

0.9

Cret-Mioc

Romero-Herrera et al. (1973) fig. 4 (p. 392)

Eutheria-Sho85

12

699

147

41

297

78.969957

52.1

6

0.6

33.1

0.585938

Cret-Eoc

Shoshani et al. (1985) fig. 2 (p. 198)

Eutheria-Sho86

19

1191

144

70

937

87.90932

52.1

11

0.647059

14.3

0.914648

Cret-Eoc

Shoshani (1986), fig. 2 (p. XXX)

Eutheria-Spr93

13

736

28

10

44

96.195652

13.4

6

0.545455

99.3

0.470588

Paleoc-Eoc

Springer & Kirsch (1993), fig 2 top (p. 155)

Eutheria-Spr93

13

736

24

10

44

96.73913

3.6

7

0.636364

51.6

0.588235

Paleoc-Eoc

Springer & Kirsch (1993), fig 2 bottom (p. 155)

Eutheria-Spr93

13

736

28

10

44

96.195652

6.6

6

0.545455

83.5

0.470588

Paleoc-Eoc

Springer & Kirsch (1993), fig. 3 (p. 156)

Eutheria-Spr93

13

736

36

10

44

95.108696

39.5

6

0.545455

50.1

0.235294

Paleoc-Eoc

Springer & Kirsch (1993) fig. 4 (p. 157)

Eutheria-Sta92

8

506

14

34

214

97.233202

39.5

5

0.833333

26.8

1.111111

Cret-Paleoc

Stanhope et al. (1992) fig. 4a (p. 156)

Eutheria-Wys87heba

13

790

244

48

380

69.113924

13.7

1

0.090909

100

0.409639

Cret-Eoc

Wyss et al. (1987) fig. 1 (p. 104)

Eutheria-Wys87heba

13

790

138

48

380

82.531646

1

6

0.545455

7.9

0.728916

Cret-Eoc

Wyss et al. (1987) fig. 1 (p. 104)

Eutheria-Wys87lens1

18

1019

263

55

601

74.190383

0.7

5

0.3125

15.3

0.619048

Cret-Olig

Wyss et al. (1987) fig. 1 (p. 104)

Eutheria-Wys87lens2

17

1010

233

55

520

76.930693

5.6

5

0.333333

42.7

0.617204

Cret-Olig

Wyss et al. (1987) fig. 1 (p. 104)

Eutheria-Wys87my1

12

660

132

55

420

80

3.2

7

0.7

1.6

0.789041

Cret-Olig

Wyss et al. (1987) fig. 2 (p. 105)

Eutheria-Wys87my2

11

670

216

48

320

67.761194

30.3

1

0.111111

100

0.382353

Cret-Eoc

Wyss et al. (1987) fig. 2 (p. 105)

Carnivora-Tag86

8

209

57

34

103

72.727273

2.3

3

0.5

36.5

0.666667

Eoc-Pli

Tagle et al. (1986) fig. 1 (p. 513)

Carnivora-Vra94

8

233

59

23

79

74.678112

22.5

2

0.333333

51.9

0.357143

Eoc-Mioc

Vrana et al. (1994) fig. 2A (p. 53)

Carnivora-Vra94

8

233

59

23

79

74.678112

23.1

2

0.333333

53.7

0.357143

Eoc-Mioc

Vrana et al. (1994) fig. 2B (p. 53)

Arctoidea-OBr85

5

111

29

29

84

73.873874

7.2

2

0.666667

19.7

1

Eoc-Mioc

O’Brien et al. (1985) fig. 1 (p. 141)

Ursidae-Way91

10

87

101

21

143

-16.091954

43.4

2

0.25

100

0.344262

Mioc-Pleist

Wayne et al. (1991) fig. 1 (p. 299)

Archonta-Bai92-2

10

442

84

37

158

80.995475

2

7

0.875

2.9

0.61157

Paleoc-Mioc

Bailey et al. (1992) fig. 2 (p. 87)

Archonta-Bai92-3

7

373

47

25

47

87.399464

100

4

0.8

54.9

0

Paleoc-Olig

Bailey et al. (1992) fig. 3A (p. 88)

Archonta-Bai92-3

7

373

47

25

47

87.399464

100

4

0.8

54.5

0

Paleoc-Olig

Bailey et al. (1992) fig. 3B (p. 88)

Archonta-Bai92-3

7

373

47

25

47

87.399464

100

3

0.6

70.1

0

Paleoc-Olig

Bailey et al. (1992) fig. 3C (p. 88)

Archonta-Bai92-3

7

373

47

25

47

87.399464

100

2

0.4

100

0

Paleoc-Olig

Bailey et al. (1992) fig. 3D (p. 88)

Archonta-Bai92-3

7

373

47

25

47

87.399464

100

3

0.6

73.5

0

Paleoc-Olig

Bailey et al. (1992) fig. 3E (p. 88)

Archonta-Hon93-3a

4

222

18

18

18

91.891892

100

1

0.5

100

NaN

Paleoc-Eoc

Honeycutt & Adkins (1993) fig. 3a (p. 286)

Archonta-Hon93-3a

4

222

18

18

18

91.891892

100

2

1

50.2

NaN

Paleoc-Eoc

Honeycutt & Adkins (1993) fig. 3a (p. 286)

Archonta-Hon93-3bL

6

342

18

18

18

94.736842

100

4

1

65.5

NaN

Paleoc-Eoc

Honeycutt & Adkins (1993) fig. 3b (p. 286)

Archonta-Hon93-3bR

6

342

18

18

18

72.34

100

4

1

65.5

NaN

Paleoc-Eoc

Honeycutt & Adkins (1993) fig. 3b (p. 286)

Primates-Cra91

5

185

41

37

115

77.837838

9.1

2

0.666667

40.3

0.948718

Paleoc-Mioc

Cracraft & Helm-Bychowski (1991) fig. 10-1 (p. 189)

Primates-Cra91

5

185

41

37

115

77.837838

9.1

2

0.666667

18.3

0.948718

Paleoc-Mioc

Cracraft & Helm-Bychowski (1991) fig. 10-2B-E (p. 189)

Primates-Cra91

5

185

41

37

115

77.837838

9.1

2

0.666667

21.7

0.948718

Paleoc-Mioc

Cracraft & Helm-Bychowski (1991) fig. 10-2F (p. 189)

Primates-Goo85

7

236

57

40

156

75.847458

2.8

5

1

1.9

0.853448

Paleoc-Mioc

Goodman et al. (1985), fig. 2 (p. 176)

Primates-Mes97

5

95

20

13

20

78.947368

100

3

1

50.3

0

Mioc

Messier & Stewart (1997) fig. 1 (p. 152)

Rodentia-Bei91

5

179

71

34

71

60.335196

100

0

0

100

0

Eoc-Mioc

Beintema et al. (1991) fig. 1 (p. 152)

Rodentia-Cao94

5

374

56

56

186

85.026738

1.8

3

1

1.8

1

Cret-Paleoc

Cao et al. (1994) fig. 2 (p. 600)

Rodentia-Gra91

4

228

12

4

12

94.736842

100

0

0

100

0

Paleoc

Graur et al. (1991) fig. 1b V (p. 649)

Clethrionomyini-Din93

4

17

3

3

3

82.352941

100

2

1

49.5

NaN

Pli-Pleist

Din et al. (1993) fig. 2 (p. 713)

Hystricognatha-Ned94-2-5

14

271

209

39

275

22.878229

70.9

3

0.25

92.2

0.279661

Eoc-Rec

Nedbal et al. (1994) fig. 2 (p. 210)

Hystricognatha-Ned94-2-5

14

271

190

39

275

29.889299

49.3

4

0.333333

70.2

0.360169

Eoc-Rec

Nedbal et al. (1994) fig. 4 (p. 212)

Hystricognatha-Ned94-2-5

14

271

138

39

275

49.077491

7.2

8

0.666667

3.3

0.580508

Eoc-Rec

Nedbal et al. (1994) fig. 5A (p. 214)

Hystricognatha-Ned94-2-5

14

271

177

39

275

34.686347

64.6

6

0.5

74.4

0.415254

Eoc-Rec

Nedbal et al. (1994) fig. 5B (p. 214)

Hystricognatha-Ned94-7B

12

261

164

37

207

37.164751

42.8

3

0.3

75.7

0.252941

Eoc-Pleist

Nedbal et al. (1994) fig. 7B (p. 217)

Muridae-Che93

5

35

15

5

15

57.142857

100

2

0.666667

90.8

0

Mioc-Pli

Chevret et al. (1993) fig. 2 (p. 3435)

Ungulata-Dou93

8

207

43

19

73

79.227053

42.4

3

0.5

51.3

0.555556

Olig-Mioc

Douzery (1993) fig. 3 (p. 1516)

Ungulata-Gra94

5

220

39

27

60

82.272727

9

1

0.333333

57.1

0.636364

Paleoc-Olig

Graur & Higgins (1994) fig. 1b (p. 359)

Ungulata-Pro93-1C,D

5

274

6

6

6

97.810219

100

2

0.666667

100

NaN

Paleoc-Eoc

Prothero (1993) fig. 13-1C (p. 175)

Ungulata-Pro93-1C,D

5

274

6

6

6

97.810219

100

3

1

42.6

NaN

Paleoc-Eoc

Prothero (1993) fig. 13-1D (p. 175)

Ungulata-Pro93-1G

6

324

6

6

12

98.148148

5.9

4

1

5.9

1

Paleoc-Eoc

Prothero (1993) fig. 13-1G (p. 175)

Artiodactyla-Jer95

7

205

61

34

145

70.243902

10.4

4

0.8

4.1

0.756757

Eoc-Mioc

Jermann et al. (1995) fig. 1 (p. 58)

Artiodactyla-Miy89

5

64

81

27

81

-26.5625

100

0

0

100

0

Olig-Pleist

Miyamoto & Boyle (1989) fig. 3 (p. 444)

Artiodactyla-Miy89

5

64

81

27

81

-26.5625

100

0

0

100

0

Olig-Pleist

Miyamoto et al. (1989) fig. 1A-C (p. 345)

Artiodactyla-Miy89

5

64

45

27

81

29.6875

23

2

0.666667

23

0.666667

Olig-Pleist

Miyamoto et al. (1989) fig. 1D (p. 345)

Artiodactyla-Miy93-1A

4

59

27

27

57

54.237288

7.4

2

1

7.4

1

Olig-Pleist

Miyamoto et al. (1993) fig. 19.1A/D (p. 273)

Artiodactyla-Miy93-1C

5

85

36

24

60

57.647059

18.8

1

0.333333

100

0.666667

Olig-Pli

Miyamoto et al. (1993) fig. 19.1C (p. 273)

Camelidae-Sta94

4

44

33

33

96

25

9.9

2

1

9.9

1

Olig-Pleist

Stanley et al. (1994) fig. 1 (p. 3)

Rhinocerotidae-Mor94

4

71

32

19

45

54.929577

49.8

1

0.5

49.8

0.5

Olig-Mioc

Morales & Melnick (1994) fig. 2/3 (p. 131)

Cetacea-Dou93

5

107

25

13

38

76.635514

21

1

0.333333

100

0.52

Olig-Mioc

Douzery (1993) fig. 4 (p. 1517)

Cetacea-Gre93

5

95

13

13

20

86.315789

11

3

1

11

1

Mioc

Gretarsdottir & Arnason (1993) fig. 4a/b (p. 314)

Cetacea-Mil93-1

7

121

56

19

82

53.719008

39.6

1

0.2

100

0.412698

Olig-Mioc

Milinkovitch et al. (1993) fig. 1 (p. 347)

Cetacea-Mil93-2

6

105

60

19

69

42.857143

51.4

1

0.25

100

0.18

Olig-Mioc

Milinkovitch et al. (1993) fig. 2 (p. 348)


References for mammalian molecular trees

  • Ammermann, L. K. and Hillis, D. M. 1992. A molecular test of bat relationships: monophyly or diphyly? Systematic Biology, 41, 222-232.
  • Bailey, W. J., Slightom, J. L., and Goodman, M. 1992. Rejection of the “flying primate” hypothesis by phylogenetic evidence from the e-globin gene. Science, 256, 86-89.
  • Beintema, J. J., Rodewald, K., Braunitzer, G., Czelusniak, J., and Goodman, M. 1991. Studies on the phylogenetic position of the Ctenodactylidae (Rodentia). Molecular Biology and Evolution, 8, 151-154.
  • Cao, Y., Adachi, J., Yano, T., and Hasegawa, M. 1994. Phylogenetic place of guinea pigs: no support of the rodent-poplyphyly hypothesis with maximum-likelihood analyses of multiple protein sequences. Molecular Biology and Evolution, 11, 593-604.
  • Chevret, P., Denys, C., Jaeger, J.-J., Michaux, J., and Catzeflis, F. M. 1993. Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae). Proceedings of the National Academy of Sciences U.S.A., 90, 3433-3436.
  • Cracraft, J. and Helm-Bychowski, K. 1991. Parsimony and phylogenetic inference using DNA sequences: some methodological strategies. Pp. 184-220 in Miyamoto, M. M. and Cracraft, J. (Eds), Phylogenetic analysis of DNA sequences. Oxford University Press, New York.
  • D’Erchia, A. M., Gissi, C., Pesole, G., Saccone, C., and Áranson, U. 1996. The guinea-pig is not a rodent. Nature, 381, 597-600.
  • De Jong, W. W., Leuinissen, J. A. M., and Wistow, G. J. 1993. Eye lens crystallins and the phylogeny of placental orders: evidence for a macroscelid-paenungulate clade. Pp. 5-12 in Szalay, F. S., Novacek, M. J., and McKenna, M. C. (Eds), Mammal phylogeny: Placentals. Springer Verlag, New York.
  • Din, W., David, B., Laurin, B., Chaline, J., Harada, M., and Catzeflis, F. 1993. DNA/ RNA hybridization study of the Clethrionomyini (Arvicolidae, Rodentia): compoarison with morphological data. Comptes rendus de l’Académie des Sciences, Paris, Série II, 316, 709-716.
  • Douzery, E. 1993. Evolutionary relationships among Cetacea based on the sequence of the mitochondrial rRNA gene: possible paraphytly of toothed-whales (odontocetes) and long separate evolution of sperm whales (Physteridae). Comptes rendus de l’Académie des Sciences, Paris, Sciences de la Vie, 316, 1511-1518.
  • Easteal, S. 1990. The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics, 124, 165-173.
  • Gemmell, N. J. and Westerman, M. 1994. Phylogenetic relationships within the Class Mammalia: a study using mitochondrial 12S RNA sequences. Journal of Mammalian Evolution, 2, 3-23.
  • Goodman, M., Czelusniak, J., and Beeber, J. E. 1985. Phylogeny of Primates and other eutherian orders: a cladistic analysis using amino acid and nucleotide sequence data. Cladistics, 1, 171-185.
  • Graur, D. 1993. Molecular phylogeny and the higher classification of eutherian mammals. Trends in Ecology and Evolution, 8, 141-147.
  • Graur, D. and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the Order Artiodactyla. Molecular Biology and Evolution, 11, 357-364.
  • Graur, D., Hide, W. A., and Li, W.-H. 1991. Is the guinea-pig a rodent? Nature, 351, 649-652.
  • Grétarsdóttir, S. and Árnason, Ú. 1993. Molecular studies on two variant repeat types of the common cetacean DNA satellite of the Sperm whale, and the relationship between Phystereidae (Sperm whales) and Ziphiidae (Beaked whales). Molecular Biology and Evolution, 10, 306-318.
  • Honeycutt, R. L. and Adkins, R. M. 1993. Higher level systematics of eutherian mammals: an assessment of molecular characters and phylogenetic hypotheses. Annual Review of Ecology and Systematics, 24, 279-305.
  • Irwin, D. M. and Árnason, U. 1994. Cytochrome b gene of marine mammals: phylogeny and evolution. Journal of Mammalian Evolution, 2, 37-55.
  • Jermann, T. M., Opitz, J. G., Stackhouse, J., and Benner, S. A. 1995. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature, 374, 57-59.
  • Krajewski, C., Driskell, A. C., Baverstock, P. R., and Braun, M. J. 1992. Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: evidence from cytochrome b DNA sequences. Proceedings of the Royal Society, Series B, 250, 19-27.
  • Krajewski, C., Painter, J., Buckley, L., and Westerman, M. 1994. Phylogenetic structure of the marsupial family Dasyuridae based on cytochrome b DNA sequences. Journal of Mammlian Evolution, 2, 25-35.
  • Martin, A. P. and Palumbi, S. R. 1993. Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Molecular Biology and Evolution, 10, 873-891.
  • Messier, W. and Stewart, C.-B. 1997. Episodic adaptive evolution of primate lysozymes. Nature, 385, 151-154.
  • Milinkovitch, M. C., Orti, G., and Meyer, A. 1993. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature, 361, 346-348.
  • Miyamoto, M. M. and Boyle, S. M. 1989. The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. Pp. 437-450 in Frenholm, B., Bremer, K., and Jornvall, H. (Eds), The hierarchy of life. Elsevier, Amsterdam.
  • Miyamoto, M. M. and Goodman, M. 1986. Biomolecular systematics of eutherian mammals: phylogenetic patterns and classification. Systematic Zoology, 35, 230-240.
  • Miyamoto, M. M., Tanhauser, S. M. amd Laipis, P. J. 1989. Systematic relationships in the artiodactyl tribe Bovini (family Bovidae), as determined from mitochondrial DNA sequences. Systematic Zoology, 38, 342-349.
  • Miyamoto, M. M., Kraus, F., Laipis, P. J., Yanhauser, S. M., and Webb, S. D. 1993. Mitochondrial DNA phylogenies within Artiodactyla. Pp. 268-XXX in Szalay, F. S., Novacek, M. J., and McKenna, M. C. (Eds), Mammal phylogeny: Placentals. Springer Verlag, New York.
  • Morales, J. C. and Melnick, D. J. 1994. Molecular systematics of the living rhinoceros. Molecular Phylogenetics and Evolution, 3, 128-134.
  • Nedbal, M. A., Allard, M. W., and Honeycutt, R. L. 1994. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Molecular Phylogenetics and Evolution, 3, 206-220.
  • O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda’s phylogeny. Nature, 317, 140-144.
  • Otto, S. P., Cummings, M. P., and Wakeley, J. 1996. Inferring phylogenies from sequence data: the effects of sampling. Pp. 103-115 in Harvey, P. H., Leigh Brown, A. J., Maynard Smith, J., and Nee, S. (Eds), New uses for new phylogenies. Oxford University Press, Oxford.
  • Penny, D., Hendy, M. D., and Steel, M. A. 1991. Testing the theory of descent. Pp. 155-183 in Miyamoto, M. M. and Cracraft, J. (Eds), Phylogenetic analysis of DNA sequences. Oxford University Press, New York.
  • Pesole, G., Sbisá, E., Mignotte, F., and Saccone, C. 1991. The branching order of mammals: phylogenetic trees inferred from nuclear and mitochondrial molecular data. Journal of Molecular Evolution, 33, 537-542.
  • Pettigrew, J. D. 1991. Wings or brain? Convergent evolution in the origins of bats. Systematic Zoology, 40, 199-216.
  • Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. 1989. Phylogenetic relations between microbats, megabats, and primates (Mammalia: Chiroptera and Primates). Philosophical Transactions of the Royal Society of London, Series B, 325, 489-559.
  • Philippe, H. 1997. Rodent monophyly: pitfalls of molecular phylogenies. Journal of Molecular Evolution, in press.
  • Prothero, D. R. 1993. Ungulate phylogeny: molecular vs. morphological evidence. Pp. 173-181 in Szalay, F. S., Novacek, M. J., and McKenna, M. C. (Eds), Mammal phylogeny: Placentals. Springer Verlag, New York.
  • Retief, J. D., Krajewski, C., Westerman, M., Winkfein, R. J., and Dixon, G. H. 1995. Molecular phylogeny and evolution of marsupial protamine P1 genes. Proceedings of the Royal Society, Series B, 259, 7-14.
  • Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E. 1973. Molecular evolution of myoglobin and the fossil record: a phylogenetic syntheis. Nature, 246, 389-395.
  • Shoshani, J. 1986. Mammal phylogeny: comparison of morphological and molecular results. Molecular Biology and Evolution, 3, 222-242.
  • Springer, M. S. and Kirsch, J. A. W. 1993. A molecular perspective on the phylogeny of placental mammals based on mitochondrial 12S rDNA sequences. Journal of Mammalian Evolution, 1, 149-166.
  • Stanhope, M. J., Czelusniak, J., Si, J. S., Nickerson, J., and Goodman, M. 1992. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Molecular Phylogenetics and Evolution, 1, 148-160.
  • Stanley, H. F., Kadwell, M., and Wheeler, J. C. 1994. Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proceedings of the Royal Society, Series B, 256, 1-6.
  • Tagle, D. A., Miyamoto, M. M., Goodman, M., Hofmann, O., Braunitzer, G., and Jalanka, H. 1986. Hemoglobin of pandas: phylogenetic relationships of carnivores as ascertained with protein sequence data. Naturwissenschaften, 73, 512-514.
  • Vrana, P. B., Milinkovitch, M. C., Powell, J. R., and Wheeler, W. C. 1994. Higher level relationships of the arctoid Carnivora based on sequence data and “total evidence”. Molecular Phylogenetics and Evolution, 3, 47-58.
  • Wayne, R. K., Van Valkenburgh, B., and O’Brien, S. J. 1991. Molecular distance and divergence time in carnivores and primates. Molecular Biology and Evolution, 8, 297-319.
  • Wyss, A. R., Novacek, M. J., and McKenna, M. C. 1987. Amino acid sequence versus morphological data and the interordinal relationships of mammals. Molecular Biology and Evolution, 4, 99-116.